
LOCALITY-AWARE AND LOW MAINTENANCE OVERHEAD P2P SYSTEM 
 

Chi-Jen Wu, De-Kai Liu and Ren-Hung Hwang 
Department of Computer Science and Information Engineering, National Chung Cheng University, Taiwan 

{cjwu,dkliu,rhhwang}@exodus.cs.ccu.edu.tw 
 

ABSTRACT 
This work describes a novel locality-aware structured 
peer-to-peer (P2P) overlay network, referred to as 
LAPTOP. One important aspect of constructing a 
structured P2P network is how to reduce the maintenance 
overheads while maintaining efficient routing and 
network locality. LAPTOP organizes nodes into a tree-
based overlay network in a self-organizing manner and 
builds the routing table by taking network locality into 
account. The tree-based overlay network enables 
LAPTOP to utilize the parental relation to reduce the 
overheads of overlay maintenance. Moreover, LAPTOP 
adopts proximity neighbor selection (PNS) in the routing 
table construction to achieve low routing latency. 
Mathematical analysis and simulations are conducted to 
evaluate the efficiency and scalability of LAPTOP. The 
mathematical analysis performed here demonstrates that 
the routing table size of a node is bounded by logd N ×(d-
1), the routing path length is bounded by logd N, and the 
joining and leaving overhead is bounded by d logd N, 
where N denotes the number of nodes in the system and d 
represents the maximum degree of each node on the 
overlay tree. Our simulation results show that the average 
path stretch and routing path length are just 1.48 and 3.8, 
respectively, in a system of 100 000 nodes with a 
maximum degree of 16 . Compared to previous research, 
the proposed LAPTOP approach reduces overlay 
maintenance overheads while still providing efficient 
routing. 
 
KEY WORDS 
Peer-to-Peer, Overlay Network 

1.  Introduction 
The demand for sharing the computing power of billions 
of personal computers on the Internet is increasing rapidly 
as the computing capability of personal computers 
becomes  more and more powerful, making the peer-to-
peer (P2P) network model preferable to the traditional 
client/server model for Internet applications. P2P 
networks have been used in various distributed 
applications.  

The literature roughly divides P2P networks into three 
categories: centralized, decentralized and unstructured, 
and decentralized but structured, based on the underlying 
technology [1]. For example, the Napster file sharing 
system [2] adopts a centralized approach that enables 
nodes to search for interesting files by issuing queries to 
the central directory server. Meanwhile, the Gnutella file 

sharing system [3] applies a decentralized and 
unstructured approach to let nodes identify the location of 
a file of interest by flooding queries to all the nodes in the 
system. In contrast, the Chord [4] system uses a 
decentralized but structured approach to provide a lookup 
service framework for P2P networks. The whole Chord 
system can be viewed as a distributed hash table. Data 
items and nodes in Chord are associated with identifiers, 
and identifiers for data items and nodes are so-called keys 
and node ids, respectively. Each node is responsible for 
storing a range of keys and also for being aware of some 
other nodes.  

This study believes that the decentralized but 
structured P2P network is most suitable for large-scale 
distributed applications, since it searches for the node that 
keeps interesting data in a scalable and efficient manner 
and can be widely deployed as an application level 
routing service for various P2P applications. However, 
two critical issues must be overcomed when designing 
decentralized but structured P2P networks. The first issue 
is the high complexity of locality-aware overlay 
construction. To improve the routing efficiency of a 
decentralized but structured P2P network, several 
approaches [5-7] have been proposed to build overlay 
networks in a locality-aware manner. Although the 
routing performance of these locality-aware overlay 
networks is competitive with that of underlying IP routing, 
these approaches require either pre-chosen landmarks or 
complete BGP routing table information, resulting in high 
complexity overlay construction. The second issue is high 
routing table maintenance complexity. In a P2P network, 
the network topology changes frequently since nodes can 
join and leave the overlay network arbitrarily. To avoid 
routing performance degradation because of topology 
changes, P2P networks in the literature always enable 
each node to periodically invoke a routing table 
maintenance procedure to maintain the accuracy of all of 
their routing table entries. Nevertheless, to maintain 
accurate routing table entries, the number of nodes that a 
node needs to contact during the routing table 
maintenance procedure may increase rapidly as the 
system size grows, resulting in high maintenance cost. 

This work presents LAPTOP, a novel lightweight, 
locality-aware P2P overlay network with efficient, 
scalable, robust lookup and routing schemes. LAPTOP 
organizes nodes into a tree-based overlay network in a 
self-organizing way and uses a heuristic proximity 
neighbor selection (PNS) scheme to take network 
proximity into consideration. Furthermore, LAPTOP 
reduces routing overhead by having a node periodically 



update the routing information of its parent node. This 
approach enables LAPTOP to route efficiently with low 
routing table maintenance overhead as compared to 
previous approaches. The maintenance overhead of the 
overlay network are also relatively low since a LAPTOP 
node only checks its connectivity to its parent node 
periodically, while most other P2P systems need to check 
the connectivity with a set of nodes. With these novel 
features, the routing path length in a LAPTOP overlay 
network is bounded by O(logdN) hops and the routing 
table size of the node is bounded by logd N ×(d-1), where 
N denotes the number of nodes and d represents the 
maximum degree of each node.  

The rest of this paper is organized as follows. Section 
2 then presents the overview of LAPTOP and describes 
how LAPTOP solves the two challenges mentioned above. 
The mathematical analysis and simulation results for 
evaluating the performance of LAPTOP then are 
presented in sections 3 and 4. Finally, section 5 offers 
conclusions and future research directions.  

2. Design of LAPTOP 
LAPTOP utilizes the basic principles of the PNS 
approach to construct a hierarchical overlay network. 
However, the overlay network in LAPTOP is formed in a 
self-organizing manner. Specifically, LAPTOP enables a 
newcomer to randomly select a LAPTOP node as its 
parent node to obtain a logic address and to form a tree-
based overlay network. LAPTOP also employs a 
hierarchical addressing scheme to facilitate the PNS 
mechanism process. Thus, unlike other approaches that 
need to periodically exchange a large number of messages 
among nodes, a LAPTOP node only exchanges 
information with its parent node periodically. 

2.1 LAPTOP Operations 

The overlay topology formed by LAPTOP is a tree, but 
each node builds a routing table to aid routing process and 
strengthen system robustness. Each node in LAPTOP has 
a node address which is used to indicate the logical 
location of the node in the overlay, and is represented by a 
sequence of dotted decimal numbers, resembling the IP 
address format but with a variable length. The address of 
LAPTOP node is formally defined as follows:  
Definition 1 (Node address): Each node has a unique 
address represented by a dotted decimal number, in which 
each decimal number ranges from 1 to d, where d denotes 
the maximum degree of a node in LAPTOP. The 
LAPTOP overlay network assumes that a root node is a 
preparation node that is initially assigned the address, “1” 
and should never fail.  
 
1) Host joining: When a new node joins the LAPTOP 
overlay network it will invoke the Join procedure to 
locate its parent location in the overlay network and 
obtain its node address. As in mOverlay [14], the 
approach described here assumes the existence of a well-
known bootstrap node, which can be a single machine or 
a set of machines. The bootstrap node maintains a global 

node information cache and will guide a new node to find 
its parent node. Therefore, the first step of the join 
procedure is to contact the bootstrap node to obtain 
information. In LAPTOP, the start node, which refers to 
the potential parent node of the new node, is randomly 
selected from the existing nodes. The new node selects 
the start node as its parent node if the degree of the start 
node is not full; otherwise, the start node will randomly 
select one of its child nodes as the new start node for the 
new node. The procedure is repeated until a parent node is 
found. The parent node then creates a logic address by 
appending a unique number to its own address for the new 
node. The advantage of this join procedure is that the 
constructed overlay tree is likely to be a balanced tree due 
to the random selection of the start node.  

Figure 1 shows an example of the join procedure. The 
maximum degree of a node is 3. The new node first 
contacts with the bootstrap node and gets a randomly 
selected start node whose address is 1.1. The new node 
then contacts with node 1.1, but is redirected to node 1.1.1 
since the degree of node 1.1 is full. Thus, the new node 
becomes the child node of node 1.1.1 and is assigned an 
address of 1.1.1.1. 

 

1 (Root node)

1.1 1.2 1.3

1.1.1 1.1.2 1.1.3 1.2.1 1.2.2 1.2.3 1.3.1 1.3.2 1.3.3

1.2.3.11.1.2.1 1.3.3.11.2.1.1 1.2.1.2 1.3.2.1New node

Bootstrap node

1. Fetch a random node

2. Locate parent

3. Get address

1 (Root node)

1.1 1.2 1.3

1.1.1 1.1.2 1.1.3 1.2.1 1.2.2 1.2.3 1.3.1 1.3.2 1.3.3

1.2.3.11.1.2.1 1.3.3.11.2.1.1 1.2.1.2 1.3.2.1New node

Bootstrap node

1. Fetch a random node

2. Locate parent

3. Get address

 
Fig. 1: Example of the Join procedure 

 
Node address 1.2.3.1

default routing set

1.2

Routing table

1.1.x
1.3.x

140.123.105.14

120.190.10.3

192.83.193.39
120.140.190.1

110.19.100.17
1.2.1.x
1.2.2.x

1.2.3.2.x
1.2.3.3.x

1.1.3
1.3.2.1
1.2.1.1
1.2.2

Node address 1.2.3.1

default routing set

1.2

Routing table

1.1.x
1.3.x

10.123.195.220

120.190.10.3

192.83.193.39
120.140.190.1

110.19.100.17
1.2.1.x
1.2.2.x

1.2.3.2.x
1.2.3.3.x

1.1.3
1.3.2.1
1.2.1.1
1.2.2

1.2.31.2.3

Node address 1.2.3.1

default routing set

1.2

Routing table

1.1.x
1.3.x

140.123.105.14

120.190.10.3

192.83.193.39
120.140.190.1

110.19.100.17
1.2.1.x
1.2.2.x

1.2.3.2.x
1.2.3.3.x

1.1.3
1.3.2.1
1.2.1.1
1.2.2

Node address 1.2.3.1

default routing set

1.2

Routing table

1.1.x
1.3.x

10.123.195.220

120.190.10.3

192.83.193.39
120.140.190.1

110.19.100.17
1.2.1.x
1.2.2.x

1.2.3.2.x
1.2.3.3.x

1.1.3
1.3.2.1
1.2.1.1
1.2.2

1.2.31.2.3

 
Fig. 2: Routing information at node “1.2.3.1” 

 
2) Message routing: LAPTOP takes advantage of its 
hierarchical address to achieve efficient message routing. 

LAPTOP can route message in less than  steps if 
the overlay tree is balanced. The longest prefix matching 
scheme is adopted as the default routing scheme for 
LAPTOP.  

⎡ Ndlog ⎤

In LAPTOP, each node maintains a default routing set 
and a routing table for message forwarding. Each entry in 
these tables comprises the logic address of a node, as well 



as its public IP address. The default routing set comprises 
the ancestor and children node information. The ancestor 
information is retrieved during the joining process, while 
the child node information is obtained when it accepts 
new child nodes.  

In the routing table, each routing entry records the 
information of the relay node to a sub-tree, which is 
considered to be the “nearest” node to that sub-tree 
according to some proximity metric. Intuitively, if a 
message is to be routed from the current node to a node of 
that sub-tree, the node in the routing table of the 
corresponding entry is the best candidate for forwarding 
the message to. For a node that is at the lth level of the 
overlay, its routing table consists of l ﹡ (d-1) entries. 
Restated, the routing table records the nearest node of 
each sub-tree from levels 1 to l. Notably, the overlay tree 
may not be not a complete tree, some of the routing 
entries may be empty. Figure 2 shows an example of 
these two routing tables of node 1.2.3.1 of Fig. 1. The 
default routing set which records the information of its 
parent and grandparent nodes. Since the maximum degree 
is 3 and node 1.2.3.1 is located at the 3rd level, the 
routing table contains six entries. Two of them are empty: 
entry 1.2.3.2.x and entry 1.2.3.3.x, where “x” represents a 
wildcard. Meanwhile, the routing entry of “1.1.x” 
indicates that node 1.1.3 is the nearest node to the sub-tree 
rooted at node 1.1, namely, all nodes that share the prefix 
“1.1” in their addresses. The routing table is built based 
on a heuristic PNS mechanism which is described later. 

A new node can easily initialize its routing tables. 
After the new node contacts with its parent and obtains its 
node address, it can ask the parent to supply routing 
information from the routing tables of the parent as its 
initial routing information. Since the new node is one 
level below its parent node in the overlay, the entries of 
the lowest level initially are set to empty. 

Laptop adopts the PNS mechanism to exploit locality. 
The major problem of PNS mechanism is its high 
maintenance overhead, which includes initial set up 
overhead and periodic update overhead. LAPTOP 
attempts to reduce these overhead by avoiding periodic 
update overhead. In LAPTOP, each node keeps the node 
address information, including logic address and public IP 
address, of all its children nodes as well as grandchildren 
nodes, i.e., two generations of descendents comprise a 
“descendant cache”. This cache is a small cache with size 
d2 records, and is updated only when the descendents are 
changed. When a node copies the routing table from its 
parent, it can either use it to update the entries in the 
routing table or perform a heuristic PNS mechanism. In 
the later case, for each routing entry, the new node 
contacts the node in the routing entry to measure the 
proximity as well as fetch node addresses in its 
descendant cache. The new node then randomly chooses a 
certain number of nodes, say K, to measure the proximity 
to these nodes according to some proximity metric. If the 
least proximity is less than that of the current node in the 
routing entry, the entry is then updated using the node that 
has the least proximity. Since a LAPTOP node is 

randomly placed on the overlay tree, this scheme 
resembles to randomly select K nodes to perform PNS 
mechanism. A node can perform the procedure when it is 
not busy or to keep most up to date information for some 
frequently referred entries. A similar approach is adopted 
to fill in empty entries, but needs additional information, 
i.e., maintenance set, which will be described later. 
 
3) Overlay and routing table maintenance: To maintain 
the network locality property of the routing table and 
reduce the overlay maintenance cost, each node 
periodically sends a Heartbeat message to its parent to 
probe the parent reliability. That is, a LAPTOP node only 
probes one node, namely, its parent node, periodically 
rather than probing each entry in its routing table. 
Consequently, the maintenance overhead is significantly 
reduced. 

To achieve both good network locality property and 
low cost, this work proposes a heuristic PSN mechanism 
that assumes each node maintains a descendant cache and 
a “maintenance set”. The maintenance set is similar to the 
routing table, but the node information recorded in each 
entry is a randomly selected node in the corresponding 
sub-tree. Accordingly, the size of the maintenance set for 
a node at the lth level of the overlay is l ﹡(d-1). The 
maintenance set fulfills two purposes. First, the 
information in the maintenance set can be used to fill 
empty entries in the routing table. Second, when the node 
of a routing entry fails, the node in the maintenance set 
can be used as a temporary substitute.  

The maintenance set is maintained as follows. When a 
node sends the Heartbeat message to its parent, it will also 
include the address information of an active node 
randomly selected from its descendant cache. The parent 
node then sends back an ACK message to this child node 
with the active node information collected from all its 
children nodes, along with the maintenance set it received 
from its parent node. The difference between the routing 
table and the maintenance set is that information in the 
former table may be stale, but considers network 
proximity, while the later table is fresher but does not 
exploit network proximity. The advantage of having the 
maintenance set is that it frees a node from the need to 
update its routing table periodically which involves 
expensive proximity measurements but still can cope with 
the stale routing information problem adaptively. 

With the maintenance set, a node can fill in the empty 
routing entries either by using the information in the 
maintenance set or by performing the PNS mechanism 
through contacting the corresponding node in the 
maintenance set. Similarly, if a node finds that the node in 
a routing entry has failed, it can also utilize the PNS 
mechanism to fix the routing entry. 
 
4) Host Failure/Leaving: The Recovery procedure of 
LAPTOP relies on the Heartbeat message and the parental 
relationship. A node does not need to take any action 
when it leaves the overlay network, since each node needs 
to periodically send a Heartbeat message to its parent. 



Therefore, a node will notice the leave/failure of its child 
or parent node. The failure of a child node can easily be 
handled by its parent node by marking the absence of a 
logic address in its child list. Meanwhile, the failure of a 
single parent node is handled by the grandparent node 
using a “take over” mechanism. Specifically, when a node 
does not receive the ACK of the Heartbeat message from 
its parent node before the expiry of its timer, it will send a 
CONTENTION message to its grandparent node. (Notably, 
the address information of ancestor nodes is in the default 
routing set.) By waiting for a certain period of time, the 
grandparent node will select one of the child nodes that 
have sent the CONNECTION message to take over the 
duty of the failed node. The parent node updates its 
routing information to reflect this change, and also 
forwards update information to all of the child nodes to 
which it has sent the CONNECTION message. The 
criteria for selecting the take over node are 
implementation dependent, and one possible choice is to 
select the node with the least number of child nodes. A 
node which is already a take over node should not send a 
CONTENTION message to the grandparent node, but 
should simply notify the grandparent node of its existence. 
For multiple simultaneous node failures, if the failed 
nodes do not have a parental relationship, the failure 
recovery process can be performed independently as 
aforementioned. In cases where failed nodes have 
ancestor-descendant relationship in the overlay, a child 
node of a failed node may be unable to contact its 
grandparent node, since the grandparent node is also 
failed. In this case, the child node will receive no response 
from the grandparent node. The child node will then 
select the closest ancestor and contact it again until it 
receives a response from some ancestor node. In the worst 
case, its ancestors had been failed, it can reach the root 
node which is assumed to always be up. The found 
ancestor then selects a takeover node for its failed child 
node. The process is repeated for each level such that a 
new selected takeover node selects a takeover node for 
the failed node located one level below. 

3. Performance Analysis of LAPTOP 
This section analyzes the complexity of several major 
algorithms of LAPTOP. 

3.1 Node Joining Algorithm 

LAPTOP adopts a random tree traversal scheme for a 
newcomer to find its parent node on the overlay network. 
Lemma 1: The Join procedure requires less than 
O(logdN) steps to locate the parent of each newcomer, 
where N denotes the number of nodes in the system 
and d represents the maximum degree of a node. 
PROOF:  
A newcomer initially is assigned a randomly selected start 
node by the bootstrap node. In the worst case, the start 
node is a level 1 node, and the new node is redirected to a 
child node because the degree of the start node is full 
which repeated again and again, until a newly selected 
start node is a leaf of the current overlay. Since the start 

node is randomly selected, the overlay tends to be a 
balanced tree and the height of the overlay tree should be 
bounded by O(logd N). Therefore, the complexity of the 
Join procedure is bounded by O(logd N). □ 

3.2 Node Routing Algorithm 

Now we will show that the length of a routing path in 
LAPTOP in bounded by O(logd N). 
Lemma 2: The length of a routing path is bounded by 
O(logd N) hops, where N denotes the number of nodes 
in the system and d represents the maximum degree of 
a node. 
PROOF:  
We shall assume that the routing table of each node is 
correct and up to date. Due to the longest prefix matching, 
each routing step takes the message to a node that has a 
longer common prefix with the destination node. Since 
the length of the prefix is bounded by the height of the 
overlay tree, the length of a routing path should be 
bounded by O(logd N) hops. □ 

If the routing table is inaccurate due to many 
simultaneous node failures, the length of a routing path 
should not increase too much since with the maintenance 
set, the message will be forwarded to a node of a sub-tree 
that is approaching the destination.  

3.3 Node Recovery Algorithm 

The tree structure and hierarchical self-addressing scheme 
enables LAPTOP to efficiently handle overlay network 
change due to departure of a node, either gracefully or 
abruptly. 
 Lemma 3: The recovery procedure overhead is 
bounded by O(dlogdN)  in terms of number of nodes to 
contact. 
PROOF: 
For a single failure, the recovery procedure involves at 
most d children nodes and the parent of the failed node. 
Therefore, the communication overhead is bounded by 
O(d) in terms of nodes involved or messages to send. For 
multiple node failures, a child node may need to contact 
multiple ancestors, but the number of contact node is 
bounded by the height of the overlay tree, which is 
O(logdN) for a balanced tree. A take over node needs to 
be selected for each failed node, which requires a 
communication overhead of O(d). Therefore, in the worst 
case, the overall communication overhead is bounded by 
O(dlogdN).  □         

In summary, Table 1 compares the maintenance 
overhead of existing well-known P2P systems with 
LAPTOP in terms of the amount of control messages sent. 
Generally, hosts in a decentralized but structured P2P 
system must periodically exchange control messages to 
maintain the overlay structure as well as its routing table. 
As shown in Table 1, LAPTOP has a competitive network 
diameter compared to Pastry (by having d set comparable 
to b) and its network diameter is much smaller than Chord. 
On the other hand, the number of control messages sent 
by each host in LAPTOP is significantly less than that in 
Pastry and Chord. The major difference is that LAPTOP 



does not attempt to maintain the routing table periodically, 
but merely maintain a maintenance set as mentioned 
previously. 

Table 1: The Comparison of Current Major P2P System in 
Periodical Control Message 

 LAPTOP Chord Pastry 

Periodic 
control 
message 

O(1) O(log2N) O(logbN×(b-1)) 

Network 
Diameter O(logdN) O(log2N) O(logbN) 

4.  Performance Evaluation 
This section describes the simulation results for 
evaluating the performance of LAPTOP. Three 
experiments are designed to evaluate the performance of 
LAPTOP from various aspects. The first experiment 
evaluates the routing performance of LAPTOP under 
various overlay network sizes. Meanwhile, the second 
experiment studies the locality-aware property of 
LAPTOP in terms of latency stretch. The latency stretch 
refers to the ratio of average inter-node latency on the 
overlay network to that on the underlying IP network. 
Finally, the final experiment evaluates the robustness of 
LAPTOP in the face of node failures.  

The present simulations were run on the GA-Tech 
topology generated by Georgia Tech topology generator 
[9]. The topology generated consists of ten transit 
domains at the top level, each with an average of five 
routers. Each transit router then is attached to an average 
of ten stub domains, and each domain consists of an 
average of ten routers. Each  router is attached with 100 
end hosts. Thus, the topology consists of 5050 
hierarchically routers. The delay between two routers is 
also generated by the topology generator and the delay 
between each end host and its local router is also set to 
1ms. 

4.1 Routing Performance 

The first experiment examines the average length of 
routing paths between any two hosts in terms of hop count 
to evaluate the routing performance. Figure 3 shows the 
average path length under various numbers of LAPTOP 
nodes in the two network topologies, respectively. The 
results plotted are the average values of ten simulation 
runs. Within each run, 200,000 routing requests are 
generated, and each routing request sends a message from 
a source to a randomly selected destination node. The 
average routing path length is about 3.8 for a LAPTOP 
system with 100,000 nodes and a maximum degree of 16, 
as shown in Fig. 3. Note that, in a network of 100,000 
nodes, the average routing path length of Chord and 
Pastry are approximately 8 and 4, respectively. Therefore, 
routing in LAPTOP is quite scalable. 

4.2 Delay Stretch 

The second experiment examined the latency stretch and 
distribution of each routing hop. As mentioned above, the 

latency stretch refers to the ratio of average inter-node 
latency on the overlay network to that on the underlying 
IP network. As in the first experiment, there are 100,000 
hosts in LAPTOP. The average results of ten simulation 
runs are plotted, and 200,000 routing requests are 
randomly generated during each run.  

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Number of Nodes

A
ve

ra
ge

 n
um

be
r o

f h
op

GATech
AS

 
Fig. 3: Average routing path length under various network sizes. 
The LAPTOP system consists of 100,000 nodes, each with a 
maximum degree of 16 

 
Three versions of LAPTOP were compared. The “No 

locality” version builds routing tables without taking 
network locality into account; the “PNS” version assumes 
global information is available to create perfect PNS 
based routing tables; the “PNS-256” is equivalent to 
LAPTOP that probes a maximum of 256 nodes in 
maintenance set when building each routing entry. 

Figures 4 shows the latency stretch obtained in the 
GA-Tech network topologies. LAPTOP performs quite 
well, and yields a result very close to that of the perfect 
PNS approach. As shown in the figures, the latency 
stretch for a system of 100,000 nodes is only about 1.5. 
Since the perfect PNS approach needs to probe all nodes, 
it is infeasible. However, LAPTOP probes a maximum of 
256 nodes and can yield a very competitive stretch. 
Therefore, the maintenance set concept proposed in 
LAPTOP is both scalable and effective. Compare to 
Chord and Pastry in the GA-Tech network topology, the 
average delay stretch of Chord and Pastry are around 8 
and 1.6, respectively. Chord suffers the markedly delay 
stretch since it does not consider network locality. The 
delay stretch of Pastry is competitive to that of LAPTOP, 
but Pastry needs to exchange more node information than 
LAPTOP as shown in Table 1.  

4.3 Node Failures 

The third experiment explores the robustness of LAPTOP 
in the presence of node failures. Node failures are 
simulated on a LAPTOP system with 100,000 nodes, each 
with a maximum degree of 16. In this experiment, after 
100,000 nodes have joined the LAPTOP, a certain 
fraction, from 0% to 80%, of randomly selected hosts 
becomes and remains failed during the rest of simulation 
time. These hosts are then considered simultaneous failed 
nodes. When selected nodes become failed, 200,000 



routing requests are generated with source and destination 
nodes randomly selected from living nodes. Each result 
plotted is also the average of ten simulation runs.  

Figure 5 shows the percentages of successful and 
failed routing under various percentages of failed nodes. 
As we can see the LAPTOP system is very robust for a 
large fraction of simultaneous node failures. Figure 6 
shows the impact of node failures on route quality. The 
first bar shows the average route length (hop-count) in the 
case of no failure, while the rest of the bars show the 
average route length when 10%, 20%, and 30% of nodes 
failed, respectively.  

Notably, in this experiment, the failed nodes are never 
repaired. Compared to other P2P system, such as Pastry 
and Chord, the failed nodes not only need a period to 
stabilize their routing tables but also need to maintain the 
leaf set or ancestor list. In LAPTOP, failed routing entries 
can be tackled more efficiently due to the tree structured 
overlay and the concept of maintenance set. As a result, 
LAPTOP yields better routing performance and lower 
maintenance cost than other P2P systems. 

5.  Conclusion and Future works 
This work presented LAPTOP, which provides a simple, 
efficient, scalable and robust peer-to-peer overlay routing 
service. The performance of LAPTOP was analyzed 
mathematically and via simulations. The length of a 
routing path in LAPTOP was shown to be bounded by the 
height of the overlay tree, which is O(logdN). Moreover, 
the complexity of the join and leave procedure is bounded 
by O(dlogdN). Simulation results showed that LAPTOP 
performs very well for a system with 100,000 nodes. 
Locality was explored and taken into consideration in 
building the LAPTOP overlay structure. 

LAPTOP differs from other P2P systems by its self-
organizing locality-aware hierarchical overlay structure 
and self-addressing, longest-prefix matching routing 
scheme. Specifically, the contribution of LAPTOP is to 
demonstrate a feasible overlay network framework that 
adopts the locality-aware concept with low maintenance 
overhead. We believe that the concept of LAPTOP is also 
applicable to large-scale distributed computing systems, 
P2P applications in ad hoc networks, and more. 

0

0.5

1

1.5

2

2.5

3

3.5

4

10000 20000 30000 40000 50000 60000

Nodes

D
el

ay
 st

re
tc

h

PNS
PNS-256
No locality

 
Fig. 4: Latency stretch under various network sizes within node 

degree of 16 

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Failed Nodes (Fraction of Total)

Pe
rc

en
ta

ge

Failed Routing

Successful Routing

 
Fig. 5: Percentage of succeed and failed routing request for 

varying percentage of node failures 

3.878

3.971

4.048

4.123

3.7

3.75

3.8

3.85

3.9

3.95

4

4.05

4.1

4.15

No Failure 10% Failed Nodes 20% Failed Nodes 30% Failed Nodes
A

ve
ra

ge
 H

op
s

 
Fig. 6: Average routing path under various percentages of nodes 

failed 

References: 
[1] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, “Search and 

Replication in Unstructured Peer-to-Peer Networks,” in 
Proceedings of ACM Supercomputing, 2002. 

[2] The Napster home page, http://www.napster.com/ 
[3] The Gnutella home page, http://gnutella.wego.com/ 
[4] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. 

Balakrishnan, “Chord: A scalable peer-to-peer lookup 
service for Internet applications,” in Proceedings of 
SIGCOMM, 2001. 

[5] S. Ratnasamy, M. Handley, R. Karp, S. Shenker, 
“Topologically-Aware Overlay Construction and Server 
Selection,” In Proceedings of IEEE INFOCOM , 2002. 

[6] B. Zhao, Y. Duan, L. Huang, A. Joseph, J. Kubiatowicz, 
“Brocade: Landmark routing on overlay networks,” in 
Proceedings of IPTPS, 2002. 

[7] Z. Xu, M. Mahalingam, and M. Karlsson, “Turing 
Heterogeneity into and Advantage in Overlay Routing,” In 
Proceedings of IEEE INFOCOM, 2003 

[8] B. Y. Zhao, J. Kubiatowicz, A. Joseph, “Tapestry: An 
Infrastructure for Fault-tolerant Wide-area Location and 
Routing,” IEEE JSAC, Vol. 22, No. 1, January 2004. 

[9] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model 
an internetwork,” in Proceedings of IEEE INFOCOM, 1996 

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. 
Shenker, “A Scalable Content-Addressable Network,” in 
Proceedings of SIGCOMM, 2001. 

[11] A. Rowstron, P. Druschel, “Pastry: Scalable, 
distributed object location and routing for large-scale peer-
to-peer systems,” in Proceedings of IFIP/ACM ICDS, 2001. 

[12] X. Y. Chang, Q. Zhang, Z. Zhang, G. Song, and W. 
Zhu, “A Construction of Locality-Aware Overlay Network: 
mOverlay and Its Performance,” IEEE JSAC, Vol. 22, No. 1, 
January 2004, pp. 18-28. 


	ABSTRACT
	KEY WORDS


