
INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS
Int. J. Commun. Syst. 2007; 20:83–102
Published online 16 May 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/dac.815

A location-aware peer-to-peer overlay network

Chi-Jen Wu1, De-Kai Liu2,*,y and Ren-Hung Hwang2

1Communication Engineering, National Chung Cheng University, Taiwan
2Computer Science and Information Engineering, National Chung Cheng University, Taiwan

SUMMARY

This work describes a novel location-aware, self-organizing, fault-tolerant peer-to-peer (P2P) overlay
network, referred to as Laptop. Network locality-aware considerations are a very important metric for
designing a P2P overlay network. Several network proximity schemes have been proposed to enhance the
routing efficiency of existing DHT-based overlay networks. However, these schemes have some drawbacks
such as high overlay network and routing table maintenance overhead, or not being completely self-
organizing. As a result, they may result in poor scalability as the number of nodes in the system grows.
Laptop constructs a location-aware overlay network without pre-determined landmarks and adopts a

routing cache scheme to avoid maintaining the routing table periodically. In addition, Laptop significantly
reduces the overlay maintenance overhead by making each node maintain only the connectivity between
parent and itself. Mathematical analysis and simulations are conducted to evaluate the efficiency,
scalability, and robustness of Laptop. Our mathematical analysis shows that the routing path length is
bounded by logd N; and the joining and leaving overhead is bounded by d logd N; where N is the number of
nodes in the system, and d is the maximum degree of each node on the overlay tree. Our simulation results
show that the average latency stretch is 1.6 and the average routing path length is only about three in 10 000
Laptop nodes, and the maximum degree of a node is bounded by 32. Copyright # 2006 John Wiley &
Sons, Ltd.

Received 1 June 2005; Revised 1 January 2006; Accepted 1 March 2006

KEY WORDS: overlay networks; peer-to-peer networks; application level routing

1. INTRODUCTION

The value of sharing the computing power of billions of personal computers on the Internet is
becoming increasingly obvious as the computing capability of the personal computer is getting
more and more powerful. This makes the peer-to-peer (P2P) network model become more
attractive to a number of client/server Internet applications. Unlike the traditional client/server

*Correspondence to: D.-K. Liu, Computer Science and Information Engineering, National Chung Cheng University,
Taiwan.
yE-mail: dkliu@cs.ccu.edu.tw

Copyright # 2006 John Wiley & Sons, Ltd.

model where clients only retrieve data from the server, each host (peer) acts as both a server and
a client in a P2P network. This feature enables a node to obtain data of interest from any other
node that holds it, solving the poor scalability problem in the client/server model. P2P networks
have been used in various distributed applications, such as distributed file systems, file sharing
systems, and content distribution systems.

P2P networks in the literature can be roughly divided into three categories: centralized,
decentralized and unstructured, and decentralized but structured, based on the underlying
technology [1]. For example, the Napster file sharing system [2] adopts a centralized approach
that enables nodes to search for files of interest by issuing queries to the central directory server.
Meanwhile, the Gnutella file sharing system [3] applies a decentralized and unstructured
approach to let nodes identify the location of a file of interest by flooding queries to all the nodes
in the system. On the other hand, the Chord [4] system uses a decentralized but structured
approach to provide a lookup service framework for P2P networks. The whole Chord system
can be viewed as a distributed hash table which maps identifiers of nodes and data items onto an
m-bit circular identifier space. The data discovery procedure can be viewed as a routing process
that starts from the querier to the node that holds the identifier of requested data item. To
forward the query message, each Chord node maintains a routing table called a finger table. For
a node n; the kth entry of the finger table consists of the address information of the node with
the smallest identifier equal to or greater than nþ 2k�1 in the circular identifier space, where
14k4m: Nodes in node n’s finger table are so-called successors of n: Figure 1 shows a simple
example of Chord which consists of three nodes. Node 1’s successors are nodes with the least
identifiers equal to or greater than ð1þ 20Þ; ð1þ 21Þ; and ð1þ 22Þ; and they are node 4, node 4,
and node 7. When a node wants to search for a data item, it generates a query within the
corresponding identifier and starts the routing process. At each step, each node first checks
whether it holds the requested data item. If yes, it will reply this query, otherwise, it forwards the
query to its successor with the greatest identifier in its finger table that precedes the requested
data item’s identifier.

We believe that the decentralized but structured P2P network is most suitable for large-scale
distributed applications since it searches for the node that keeps data of interest in a scalable and
efficient way, and it can be widely deployed as an application level routing service for various
P2P applications. However, the design of a decentralized but structured P2P network has to
overcome two critical issues. The first issue is the long routing latency. Several proximity
schemes [5–9] have been proposed to avert long routing latency in current structured P2P
networks, but they require a high-complexity procedure to periodically maintain the routing
table [7] (e.g. Pastry system) or they need pre-chosen landmarks to construct the overlay.
However, the P2P system is by its very nature unstable since nodes join and leave frequently.
For instance, the study of Gnutella [3] shows around approximately 1200 membership changes
per minute in a 100 000 nodes P2P system. Another proximity scheme needs some pre-chosen
landmarks or a complete BGP routing table support. As a result, they both increase the
difficulty of the P2P system deployment.

The second issue is system maintenance overhead. The existing structured P2P networks allow
nodes to keep some nearby nodes in their routing tables in order to achieve efficient routing. The
routing table size corresponds with the capacity of the system size in some structured P2P
networks, and the system size should be pre-defined to be large enough to avoid nodeID
collision or for further capacity of system. As a result, the number of practical participants is
significantly less than the system size and increases the redundant maintenance overhead.

C.-J. WU, D.-K. LIU AND R.-H. HWANG84

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:83–102

DOI: 10.1002/dac

This work presents Laptop, a novel self-organizing P2P overlay network with efficient,
scalable, robust lookup and routing schemes. Laptop adopts the location-aware concept to the
overlay construction. Specifically, Laptop organizes nodes into a tree-based overlay network
and uses a novel node addressing scheme to enable nodes to be roughly aware of its physical
location in the underlying network when they join the overlay network. Besides, a routing cache
learns routing entries during forwarding messages so as to reduce the significant routing table
maintenance overhead. Therefore, the routing path length in a Laptop overlay network is
bounded by Oðlogd NÞ hops in the balance overlay tree, where N is the number of nodes, and
d is the maximum degree of each node. Meanwhile, the tree-based overlay network enables each
Laptop node to periodically contact with only one node, i.e. its parent node in the tree-based
overlay network, for overlay maintenance. As a consequence, the overlay maintenance overhead
is greatly reduced compared to the existing structured P2P networks.

Our simulation results show that the average routing path length is three, and that the average
latency stretch is 1.6 in the case of 100 000 nodes in the overlay network, and the maximum
degree of a node is bounded by 32. The maintenance overhead of Laptop is also relatively low
since a Laptop node only checks its connectivity to its parent node periodically, while most
other P2P systems need to check the connectivity with a set of nodes.

0

1

2

3

4

5

6

7

K Successor

1 7

2 7

3 1

K Successor

1 1

2 1

3 4

K Successor

1 4

2 4

3 7

Figure 1. Chord system.

LOCATION-AWARE PEER-TO-PEER OVERLAY NETWORK 85

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:83–102

DOI: 10.1002/dac

The rest of this paper is organized as follows. First, Section 2 reviews P2P networks related
literature. Next, Section 3 presents an overview of Laptop and describes how Laptop
approaches the three issues mentioned above. Section 4 then provides a detailed overview of
Laptop. Section 5 shows our mathematical analysis and the simulation results for evaluating the
performance of Laptop. Finally, we conclude our work in Section 6 and discuss our future
research.

2. RELATED WORKS

Numerous approaches have been suggested to exploit network proximity in current DHT-based
P2P overlay networks. Ratnasamy et al. [8] divided these approaches into three categories:
geographic layout, proximity routing and proximity neighbour selection. We will first reviews
the three kinds of proximity mechanisms. Then we will describe some related researches on the
analysis of fault-tolerant mechanisms based on DHTs [7, 9, 10].

The concept behind the geographic layout approach is to consider the geographic layout of
nodes during the overlay construction. For example, bin-CAN [9] proposed a scheme for node
clustering and server selection by letting nodes measure RTTs to a set of pre-chosen landmarks.
Essentially, the bin-CAN attempts to map a d-dimensional space onto the geographic layout of
nodes. However, two problems emerge. First, this approach is not completely self-organizing
since the landmark has to be chosen a priori. Second, the bin-CAN is designed for clustering
nodes on the overlay network, and each node is therefore aware of nearby nodes in terms of
their geographic co-ordinate space. As a consequence, the next hop selection during the routing
process is based on greedy neighbour selection. The greedy neighbour selection may cause that a
long route to a far node consists of consecutive hops located in a physically small region,
increasing the number of hops traversed as compared to the routing in the underlying IP
network.

The proximity routing approach improves routing efficiency by optimizing the choice at each
routing step. Chord [4] is a typical example of proximity routing. A node in Chord chooses the
next hop that is either closer to the key of the message or has a lower latency to the destination
in its routing table during the routing process. Since a message is forwarded to the node that is
most likely to be close to the destination at each routing step, each node is expected to be
reached within a small number of hops. Nevertheless, the proximity routing constructs routing
tables of nodes without considering the physical network, making the route to the next hop
more likely to be a long route in the underlying physical network.

The proximity neighbour selection approach utilizes a similar scheme with proximity routing
in the next hop selection during the routing process. Proximity neighbour selection and
proximity routing differ mainly in that the proximity neighbour selection considers network
proximity in the routing table construction. Pastry [11] and Tapestry [12] are two representatives
of this kind of approach. For example, routing table entries of a Pastry node are chosen from
nearby nodes in sense of latency among all nodes with proper node ids. A message is passed to
the nearby node whose node id either shares a longest prefix with the key or is numerically closer
to the key at each routing step. Pastry exploits network proximity to overlay construction by
assuming that each Pastry node can estimate its proximity to any node in terms of an
application-specific proximity metric. Additionally, it claims that it significantly reduces the
number of routing hops on a path by choosing the next hop from a large number of nearby

C.-J. WU, D.-K. LIU AND R.-H. HWANG86

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:83–102

DOI: 10.1002/dac

nodes during the routing process. Tapestry is very similar to Pastry but differs in the mechanism
to locate the numerically closest node.

Recently, several projects have adopted the hierarchical approach to improve the routing
efficiency of some decentralized but structured P2P overlay networks. For example, Brocade
considers locality in the routing process at the autonomous system (AS) level by avoiding
routing a message through unnecessary AS domains. The Brocade [13] builds a secondary
overlay on top of a Tapestry network. The secondary overlay is composed of nodes near
network access point, such as routers and gateways. These nodes are so-called supernodes.
Messages across the wide area networks can takes advantage of the highly connected network
infrastructure between these supernodes. Therefore, messages can be routed as directly as
possible from one AS to another. Meanwhile, eCAN [14] builds an auxiliary overlay network
called expressway by exploiting the AS-level topology from BGP routing reports and predefined
landmarks to improve the routing performance of CAN.

Fault tolerance is another important issue in decentralized but structured P2P overlay
networks. Most DHT-based P2P overlay networks make nodes maintain a routing table or
neighbour table by periodically exchanging control messages with other nodes to achieve
efficient routing and overlay connectivity. Consequently, the routing table maintenance
overhead increases as the number of nodes increases. Furthermore, some of them may not be
able to provide full recovery from multiple simultaneous failures. Recently, several researchers
have started to analyse the failure recovery overhead. For example, Liben-Nowell et al. [10]
showed that the per-node maintenance protocol bandwidth is lower bounded by OðlogNÞ per
half-life, for any P2P overlay network that wishes to remain connected with a high probability in
an N-node network. Meanwhile, other research studied the robustness of multiple failures. For
instance, Datar [15] exploited the concept of a butterfly network in a P2P overlay network. The
proposed architecture retains good routing structure, even after the adversarial removal of a
constant fraction of nodes. Datar also showed how to maintain the infrastructure, as multiple
nodes fail in the case where the number of nodes joining the network is always sufficiently larger
than the number of failures.

3. OVERVIEW OF LAPTOP

Laptop is a location-aware, self-organizing P2P overlay network that focuses mainly on
reducing routing latency and providing high scalability as well as fault tolerance. Section 3.1
describes the motivation of Laptop by discussing the proximity schemes in the literature. Section
3.2 then presents the location-aware, tree-based overlay network of Laptop in detail.

3.1. Motivations

The proximity neighbour selection scheme is judged to be the best choice among the three kinds
of proximity schemes discussed in the last section since it considers the network proximity in the
overlay construction and selects the next hop from a large set of nearby nodes at each routing
step. However, existing solutions that adopt the proximity neighbour selection scheme, such as
Pastry and Tapestry, suffer from two problems. First, these approaches take the physical
network proximity into account under the assumption that the triangle inequality feature holds
true on the Internet. Nevertheless, Savage et al. [16] have shown that the triangle inequality may

LOCATION-AWARE PEER-TO-PEER OVERLAY NETWORK 87

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:83–102

DOI: 10.1002/dac

not hold true on the Internet. Second, these approaches depend highly on the ability
that nodes can estimate their ‘distances’ in terms of an application-specific proximity
metric to any node with a given IP address. This may complicate the joining and routing
process.

Brocade and eCAN build secondary overlay networks on top of Tapestry and CAN overlay
networks, respectively. The routing performance can thus be improved, especially in the case of
long routes, since the secondary overlay consists of nodes near routers and gateways. Although
these two approaches greatly reduce the routing latency to a far node, how to identify nodes that
are close to routers and gateways to form the secondary overlay remains an open issue.
In addition, these proposed approaches recognize these nodes based on BGP reports and pre-
chosen landmarks. Therefore, they improve the routing performance but sacrifice the self-
organizing feature of previous P2P overlay networks.

Laptop utilizes the concept behind the geographical layout approach and constructs a
hierarchical overlay network just like Brocade and eCAN. However, the overlay network in
Laptop is formed in a self-organizing way. Specifically, Laptop enables a newcomer to find its
access point on the tree-based overlay network only by estimating the round trip time (RTT) to
a small number of nodes on the overlay network. The access point on the tree-based overlay
network for a newcomer is so-called its parent node. Additionally, a Laptop newcomer will keep
nodes it has ever contacted during the joining process in its routing table and adopt the
proximity routing scheme to the routing process. Laptop proposes a hierarchical addressing
scheme to correlate the logical distance with the physical distance of nearby nodes, thus
improving the weakness of the proximity routing approach.

3.2. Location-aware tree-based overlay network

Laptop organizes nodes into a tree-based overlay network and enables nearby nodes to be
roughly aware of their physical distances through the proposed hierarchical addressing scheme.
Based on the addressing scheme, Laptop utilizes a hierarchical routing scheme that mimics the
nature of the IP routing, thereby achieving efficient routing. Each Laptop node is identified by a
level label and a node address and they are formally defined as follows.

Definition 1 (Level label)
A node p is assigned a label Li if distðpr; pÞ falls in Segment(i), for all i; 14i4Max Level; where
distðpr; pÞ is the RTT between node p and its parent node pr, and Segment(i), 14i4Max Level;
are configurable RTT intervals. The root node, which refers to the first node in the overlay
network, is initially assigned with label L1: The root node is assumed to be a well-known node in
the overlay network. Note that L1 is considered to be the highest level, while LMax Level is
considered to be the lowest level.

Definition 2
Nodes can only have children nodes with a level lower than themselves except the LMax Level

node. An LMax Level node only has LMax Level children nodes. An LMax Level node has children
nodes only when its parent node has reached its maximum degree. The root node maintains an
L1 node list to keep information of all existing L1 nodes. An L1 node which is not the root node
also keeps information of other L1 nodes in the overlay network.

C.-J. WU, D.-K. LIU AND R.-H. HWANG88

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:83–102

DOI: 10.1002/dac

Definition 3 (Node address)
Each node obtains one node address in the form of a dotted decimal number, and each octet of a
node address ranges from 1 to d; where d is the maximum degree of a node in Laptop. Each
node, except the L1 node, is assigned the node address by appending a unique octet to the node
address of its parent node. The root node is initially assigned with the address, ‘1’, and the
addresses of the other L1 nodes which have the format of x; x > 1; are also dynamically assigned
by the root.

Definition 4 (Physical distance of nodes)
For a descendant node Y of a node X; distðX;YÞ is less than the lower bound of Segment(p),
where p is the level label of node X; for all i; 14i5Max Level:

Figure 2 shows an example of a Laptop overlay network while d and Max Level are set to 4.
The RTT intervals for these segments (from 1 to 4) are set to [175,1], [75,175], [35,75], [0,35] in
units of ms. Essentially, these four intervals can be defined according to the expected RTT of
two nodes which are located in the same site, in different sites of the same ISP, in different ISPs
of the same country, and in different countries. By Definition 4, descendants of node ‘1’ can be
considered to be located in the same country with node ‘1’ since the level label of node ‘1’ is L1

such that the RTT between them is less than 175, the lower bound of the RTT interval of
segment 1. Similarly, descendants of node ‘1.1’ can be considered to be located in the same ISP
with node ‘1.1’ as the level label of node ‘1.1’ is L2 so that the RTT between them is less than the
lower bound of the RTT interval of segment 2.

Definitions 3 and 4 enable the routing paths on Laptop to be close to those of the IP routing
by adopting the longest-prefix matching scheme. Specifically, a message from the source node to
the destination node travels along the overlay tree up to the nearest common ancestor of them,

L4

L1

L2

L3

L4

1.3

1

1.2

1.1

1.2.1

L4 1.3.1

L2
1.4

L4 1.4.1

L3 1.4.2

L3 1.1.1

L4L41.1.1.1

95ms

55ms
85ms

45ms

15ms

5ms

15ms

40ms

15ms

5ms
1.1.1.2

10ms

Figure 2. A Laptop overlay network.

LOCATION-AWARE PEER-TO-PEER OVERLAY NETWORK 89

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:83–102

DOI: 10.1002/dac

and then travels down the tree to the destination node. Consider the case in Figure 1, a message
sent from node ‘1.1.1’ to node ‘1.4.1’ is first routed to node ‘1’, since the longest common prefix
of ‘1.1.1’ and ‘1.4.1’ is ‘1’. Node ‘1’ then forwards the message to ‘1.4’ as it is the longest prefix
entry in its routing table. Finally, node ‘1.4’ forwards the message to its child node ‘1.4.1’.
Conceptually, this example demonstrates that this message is first routed from the source node
which is located in a local ISP, to a node which resides in a regional ISP that takes charge of
local ISPs source and destination nodes. The node in the regional ISP then forwards the message
to a node in the destination node’s ISP. Finally, the message is sent to the destination node. In
this way, Laptop adopts a hierarchical routing scheme that mimics the IP routing to achieve
routing efficiency.

Each Laptop node maintains a routing table for message forwarding. Figure 3 shows an
example of the routing table of node ‘1.1.1’ in Figure 2. Each entry consists of the level label and
node address of a node, as well as its public IP address. Entries in a routing table can be divided
into two categories: default routes and routing cache. Default routes consist of the address
information of the root node, parent node, and children nodes. Information of root and parent
nodes is retrieved during the joining process, while information of a child node is obtained when
a new node become the node’s child node. The default routes enable a Laptop node to adopt a
proposed hierarchical routing scheme to forward messages. Additionally, the Laptop applies the
routing cache to further improve the routing efficiency. Entries in the routing cache are learned
when forwarding a message. Entries of the routing cache are initially set to addresses

Level 3 peer address 1.1.1

Children peers

Level 4 1.1.1.1

Level 4 11.1.2

Root & Parent

Root 1

Level 2 1.1

Routing Cache

Level 3 1.2

1.3

1.4

Level 4

Level 2

140.123.105.14

110. 1.105.13

110.12.10.13

110.12.14.13

18.1.105.13

140.83.193.39

120.140.190.1

1.4.2Level 3 192.83.193.37

Figure 3. Routing table of peer ‘1.1.1’.

C.-J. WU, D.-K. LIU AND R.-H. HWANG90

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:83–102

DOI: 10.1002/dac

information of children nodes of the root node and nodes contacted during the joining process.
The routing cache can improve the routing efficiency and achieve good load balance. Figure 4
shows an example of routing acceleration by routing cache. The routing table of node ‘1.1.1’
includes information of node ‘1.4’ because node ‘1.4’ is a child node of the root node. In this
case, when node ‘1.1.1’ sends a message with key ‘1.4.1’, it routes the message to node ‘1.4’
instead of to node ‘1’, since node ‘1.4’ has a longer common prefix with the key. As a
consequence, a shorter path is taken which excludes node ‘1’. The detail of the routing cache
maintenance will be described later. In Laptop, the number of children nodes a node can have,
as well as the size of routing cache is limited by d and C Size; respectively, where d is the
maximum degree of a Laptop node mentioned before, and C Size is a predefined parameter.
This feature makes Laptop become scalable. A replacement policy is therefore applied to the
routing cache such that it can keep more useful entries, such as far away peers or peers with
a high-level label.

The Laptop simplifies the overlay maintenance by letting the parent node take charge of its
children nodes, making it very efficient. A Laptop node periodically sends heartbeat messages to
its parent node. Therefore, the parent node will know the absence of the child node, either
because the child node gracefully notifies its leaving or if it fails abruptly. The overlay
maintenance procedure is used for either notifying the parent node about the departure of its
child node when the child node is a leave node, or assigning an active node to take over its child
node when the child node is not a leave node. The overlay maintenance procedure is not only
light-weight, but also efficient since only parent and children nodes of a failed or leaving node
are involved, and they are physically close due to the location-aware feature. Furthermore, the
searching and routing service will not be disrupted in the case of a node leaving or failure,
because the parent node will take the place of its failed or leaving child node until a new
node is selected to take over the place of this child node, enhancing the routing robustness
of Laptop.

L4

L1

L2

L3

L4

1.3

1

1.2

1.1

1.2.1

L41.3.1

L2
1.4

L41.4.1

L3 1.4.2

L3 1.1.1Routing cache

Level Address

L2 1.1
L3 1.2
L4 1.3
L2 1.4

L41.1.1.2L41.1.1.1

95ms

55ms

85ms

45ms

15ms

5ms

15ms

40ms

5ms10ms

Routing cache

Level Address

L22 1.1
L3 1.2
L4 1.3
L2 1.4

Routing cache

Level Address

L2 1.1
L3 1.2
L4 1.3
L2 1.4

15ms

Figure 4. Routing acceleration by routing cache.

LOCATION-AWARE PEER-TO-PEER OVERLAY NETWORK 91

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:83–102

DOI: 10.1002/dac

4. DESIGN OF LAPTOP

In Laptop, a newcomer can join the overlay network by invoking the node joining procedure.
In addition, a node can invoke a graceful departure procedure to leave the overlay network. On
the other hand, the failure recovery procedure will be invoked when a node fails abruptly.
Meanwhile, a prefix-based routing scheme is provided for search and routing service on the
overlay network. This section will describe these algorithms in detail, along with their
theoretical analysis.

4.1. Node joining

Laptop adopts a tree traversal scheme for a newcomer to find its parent node on the overlay
network. Due to location-aware and hierarchy features of the Laptop overlay network, a
newcomer is likely to consider a node physically close to it as its parent node. The newcomer is
assigned its level label as well as its node address by its parent node. Additionally, the newcomer
keeps nodes that it has contacted during the joining process in its routing table for further
routing processes. The joining procedure works as follows.

(1) The newcomer N sends a joining request to the root node and gets a list of L1

nodes.
(2) N determines the closest L1 node by measuring RTTs to nodes in the list.
(3) If the measured RTT for the closest L1 node falls in Segment(1), then N becomes a new L1

node and the joining process is completed.
(4) Otherwise, N sets its potential parent node as the closest L1 node.
(5) If the potential parent node does not have any children nodes, then N sets its parent

node as that potential parent node and gets its level label as well as the node address
from its parent node according to Definitions 1 and 3. The joining process is then
completed.

(6) Otherwise, N gets a list of Li children nodes that do not violate Definitions 1 and
2 if N selects them as parent nodes, for 24i5LMax Level; from the potential parent
node.

(7) N measures RTT for the list of children nodes and selects the closest one as new potential
parent node. Go back to Step 5.

Figure 5 shows an example of the joining procedure, where Max Level is set to 4. RTT
intervals for these segments (from 1 to 4) are set to [175,1], [75,175], [35,75], [0,35] in units of
ms. The newcomer first contacts root node ‘1’ to obtain the L1 node list and measures RTTs
between itself and these L1 nodes. In this scenario, it finds that node ‘1’ is the nearest L1 node
and that the measured RTT does not fall in Segment(Max Level). The newcomer then asks
node ‘1’ for a list of LX children nodes, for 24X54: It turns out that node ‘1.2’ is the nearest
node, and the RTT between the newcomer and node ‘1.2’ falls in Segment(Max Level).
Therefore, the newcomer chooses it as its parent node. Finally, the newcomer becomes an L4

child node of node ‘1.2’ and obtains a node address of ‘1.2.1’. Note that a newcomer does not
measure RTTs to LMax Level nodes to reduce the joining latency as well as the message overhead.
Since LMax Level nodes are very close to their parent nodes and are likely to appear more
frequent than nodes with other level labels, without measuring RTTs to LMax Level nodes, they
will not greatly affect the locality feature of Laptop.

C.-J. WU, D.-K. LIU AND R.-H. HWANG92

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:83–102

DOI: 10.1002/dac

Note that a newcomer may find its parent node, but the parent node cannot afford more child
nodes due to the maximum degree limitation. When the parent node has reached the maximum
degree, the following algorithm is used to resolve the exception:

(1) The parent node P notifies the newcomer N that it cannot afford more child nodes and
asks it to consider node C; the child node of P that has the lowest level label, to be its
parent node. If there are multiple children nodes qualified, the nearest one will be chosen.

(2) If C can support more child nodes, it asks N to be its LMax Level child node.
(3) Otherwise, the above procedure is repeated with C as the new parent node.

This algorithm may cause an exception of Definition 1 since the newcomer is assigned a label
LMax Level even though the RTT between it and its parent node may not fall in
Segment(Max Level). Essentially, there is a trade-off between definition compliance and system
scalability. Without the maximum node degree limitation, Definition 1 will never be violated.
However, considering the scalability of a Laptop system, a node should not have too many
children nodes since this may make it become the system bottleneck. Therefore, the definition
violation is inevitable when designing a Laptop system. To take the locality property into
account, when the parent node can accept more child nodes, the newcomer shall consider the
child node that is nearest to the original parent node to be its parent node. Consequently, the
newcomer will select the child node that has the lowest level label to be its parent node. Noted
that an LMax Level node will not be contacted during the joining process. To avoid interfering
with the joining process of the late newcomers, a newcomer that violates Definition 1 is therefore
assigned to be an LMax Level node. Now we will show that the control overhead of the joining
process is Oðd logd NÞ:

Lemma 1
The control overhead of the joining process is Oðd logd NÞ in terms of the number of nodes
to contact, where N is the number of nodes in the system and d is the maximum degree
of a node.

L1

L4

get L1 peer list

L1

L2

L3
L1

L1

L4

L1

L2

L3
L1

L1

L4

L2

L3
L1

L4

L1

L2

L3
L1

15ms

85ms
L4

L1

L2

L3
L1

L4

Join

1

1.3

2
1.2

1.1
1

2
1.2

1.1
1.3

1.3

1

2
1.2

1.1

1.3

1

21.2

1.3

1

2
1.2

1. 1

1.2.1

L4

L1

L2

L3
L1

L4

1.3

1

2
1.2

1.1

1.2.1

Step 2 Step 3

Step 4 Step 5 Step 6

125ms

65ms

get a list of L2 andL3
peers from peer “1”

65ms

L1

L4

L1

L2

L3
L1

new new

L1

L4

L1

L2

L3
L1

L1

L4

L1

L2

L3
L1

L1

L4

L2

L3
L1

L4

L1

L2

L3
L1

15ms

85ms
L4

L1

L2

L3
L1

L4

Join

1

1.3

2
1.2

1.1
1

2
1.2

1.1
1.3

1.3

1

2
1.2

1.1

1.3

1

21.2

1.3

1

2
1.2

1. 1

1.2.1

L4

L1

L2

L3
L1

L4

1.3

1

2
1.2

1.1

1.2.1

Step 1

Step 4

125ms

65ms

65ms

new

new

Figure 5. Example of the joining procedure.

LOCATION-AWARE PEER-TO-PEER OVERLAY NETWORK 93

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:83–102

DOI: 10.1002/dac

Proof
A newcomer initially chooses an L1 node from the L1 node list given by the root node. The
number of L1 nodes is bounded by d: After the nearest L1 node is found, the newcomer then
must measure the RTTs of all its Lx children nodes, for 24x5Max Level: The number of
measurements is also bounded by d: In the worst case, the newcomer finds its parent node after
traversing the whole overlay tree. As a consequence, the measurements may be repeated as many
times as the height of the overlay tree. Assume that the overlay tree is a balanced tree, the height
is therefore bounded by Oðlogd NÞ: In general, since a parent node can only have children nodes
with a lower level label and N is much larger than Max Level, a linear chain structure cannot be
formed. In the worst case, most of nodes are LMax Level nodes or children nodes of LMax Level

nodes. Since the degree of a Laptop node is d; an LMax Level node cannot have a grandchild node
unless it reaches its maximum degree. Therefore, the height of a Laptop overlay tree is bounded
by cþ logd N; where c is some constant (to reflect some high level nodes that do not have the
degree of d). In other words, the height of a Laptop overlay tree is bounded by Oðlogd NÞ:
Therefore, the control overhead for the joining process is Oðd logd NÞ: &

4.2. Node departure

The tree structure and hierarchical self-addressing scheme enables Laptop to efficiently handle
an overlay network change due to the departure of a node, be it either gracefully or abnormally.
Overlay maintenance only involves the grand parent, parent and children nodes of the leaving or
failed node. This implies that the overlay network partition due to nodes’ departure will be
recovered soon, which shows the robustness of Laptop. This subsection will discuss two node
departure cases: graceful departure and abnormal departure.

The graceful departure procedure is proposed as follows.

(1) The leaving node checks the number of children nodes in the overlay network.
(2) If the leaving node does not have any children nodes, it simply notifies its parent node of

its leaving. After receiving the notification, the parent node removes the leaving node
from its routing table. The departure procedure is completed.

(3) Otherwise, the leaving node selects the child node with the lowest RTT to it to take over
its position in order to preserve the location-aware property.

(4) All children nodes of the leaving node other than the takeover node changes its parent
node to the takeover node, while the takeover nodes changes its parent node to the
leaving node’s parent node.

The failure recovery procedure is invoked when a node fails accidentally. In Laptop, each
node shows its availability by periodically sending control messages, called HEARTBEAT
messages, to its parent node. Upon receiving a HEARTBEAT message, the parent node should
acknowledge it. In the case that children nodes have not received acknowledgment messages
from their parent node for a preset Active Period milliseconds after sending HEARTBEAT
messages, the parent node is assumed to be dead and the failure recovery procedure is invoked.
The failure recovery procedure works as follows.

(1) The children nodes of the failed node send out CONTENTION messages to their
grandparent node, start a FAILURE RECOVERY timer, and wait for a response from
the grandparent node. If the FAILURE RECOVERY timer times out and, the new
parent node is still not found, the children nodes invoke the joining procedure to find their

C.-J. WU, D.-K. LIU AND R.-H. HWANG94

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:83–102

DOI: 10.1002/dac

new parent node. Note that the children nodes have contacted with their grandparent
node during the joining procedure so that the IP address of the grandparent node is stored
in their routing caches.

(2) The parent of the failed node starts a CONTENTION timer after receiving the first
CONTENTION message from its grandchild node and continues receiving CONTEN-
TION messages from other grandchildren nodes.

(3) The parent of the failed node chooses the grandchild node with the lowest level label as
the takeover node, after the CONTENTION timer times out. The tie is broken by the
lower RTT.

(4) The parent node of the failed node then updates its routing table and child list, and sends
a TAKEOVER message to the takeover node.

(5) The parent node of the failed node sends an UPDATE PARENT message to all of the
nodes that had sent CONTENTION messages, except the takeover node, to inform them
to consider the takeover node to be their new parent node.

Now let us analyse the control overhead of the departure procedures.

Lemma 2
The graceful departure overhead is bounded by OðdÞ in terms of the number of nodes to contact.

Proof
It is trivial that the control overhead is Oð1Þ if the leaving node is a leaf node. Otherwise, the
leaving node needs to inform its parent and all of its children nodes. In this case, the control
overhead is OðdÞ since it has at most d children and one parent nodes. &

Lemma 3
The abnormal departure overhead is bounded by Oðd logd NÞ in terms of the number of nodes
to contact.

Proof
In the case that the new parent node can be found before the CONTENTION timer expires,
the recovery procedure involves d children nodes of failed nodes and the parent of the
failed node. Therefore, the control overhead is bounded by OðdÞ: Otherwise, a child node
may need to perform the joining procedure where the control overhead is bounded by
Oðd logd NÞ: &

4.3. Routing

Laptop utilizes the longest-prefix matching routing scheme when forwarding messages. The
routing entry that matches the longest prefix with the key of the message is retrieved, and the IP
address of the next hop is then used to forward the message at each routing step. A routing table
consists of a set of default routes and a routing cache. At each routing step, a node first checks
whether there is a shortcut to the destination by comparing the key of the message with
addresses of routing cache entries. If yes, the message is passed on to the next hop of the routing
cache entry, based on the longest-prefix matching scheme, otherwise, the message is passed on to
the next hop of the default route that is nearest to the destination in accordance with the
longest-prefix matching scheme. Note that the routing cache entries likely to become

LOCATION-AWARE PEER-TO-PEER OVERLAY NETWORK 95

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:83–102

DOI: 10.1002/dac

unreachable due to the node’s leaving or failure. If a node passes the message to the next hop of
a routing cache entry and finds that it is unreachable, it will reselect the next hop from the
default routes.

Once a message has reached the destination node, the destination node records the mapping
of the node address of the sender and the IP address in its routing cache. The Laptop utilizes
a routing cache maintenance scheme that is similar to the ARP cache of IP networks. Each
routing cache entry has an expiration timer, and the content of the entry is removed after the
timer expires. Since the size of the routing cache in Laptop is bounded by a predefined constant,
C Size, the next hop of a routing cache entry with the lowest level label is removed in the case
that the node wishes to add an entry in the routing cache but the routing cache is full. The tie is
broken by the least recently used (LRU) policy. Now we will show that the length of a routing
path in Laptop in bounded by Oðlogd NÞ:

Lemma 4
The length of a routing path is bounded by Oðlogd NÞ:

Proof
In the worst case, a message is first routed to the root, and then routed to a leaf along the
overlay tree due to the longest-prefix matching routing. For a balanced tree, the height of
the overlay tree is bounded by logd N: In general, the height of the overlay tree is bounded by
Oðlogd NÞ: Therefore, the length of a routing path in Laptop is also bounded by Oðlogd NÞ: &

5. PERFORMANCE EVALUATION

This section describes the simulation results for evaluating the performance of Laptop. We
designed four experiments to evaluate the performance of Laptop. The first experiment
evaluates the clustering effect of Laptop in terms of RTTs and hop counts between nodes. The
second experiment shows the routing performance of Laptop under various overlay network
sizes. The third experiment presents the location-aware property of Laptop based on the routing
stretch. The routing stretch refers to the ratio of the average inter-node latency on the overlay
network to that on the underlying IP network. Finally, the performance of failure recovery of
Laptop will be shown in the last experiment. Note that node failures are only simulated in the
last set of experiments.

The underlying physical network topology is generated by the BRITE topology generator
[17]. The network topology consists of 1 000 000 nodes which are uniformly distributed in 50
Autonomous Systems, while each AS consists of 200 local area networks (LANs). Since the
BRITE topology generator creates each node within a two-dimension co-ordinate, the delay
between any two nodes in our simulation is set proportionally to their Euclidean distance. In
addition, Max Level is set to 4, and RTT intervals for these four segments (from 1 to 4) are set
to [175,1], [75,175], [35,75], [0,35] in units of ms. The size of the routing cache in each Laptop
node, C Size, is set to 64.

The first experiment evaluates the clustering effect of the Laptop overlay network. The
Laptop performs well in terms of the clustering effect if each Laptop node finds a physically
nearby parent to join. For this reason we evaluate the cumulative distribution function (CDF)
of the RTT and the number of hops between nodes and their parent nodes under various values

C.-J. WU, D.-K. LIU AND R.-H. HWANG96

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:83–102

DOI: 10.1002/dac

of d; the maximum degree limitation of each node. The experiment consists of 10 independent
runs, and 1 000 000 Laptop nodes are randomly selected to join the overlay network at each run.
Figure 6 shows the simulation results of the RTTs and hop counts between any two nodes under
various values of d; respectively. As expected, the Laptop performs better in terms of the
clustering effect as d increases, since a parent node can afford more nearby children nodes for a
larger d: Figure 6 shows that about 80% of the nodes are within 3 hops from their parent nodes,
and 60% of the nodes have RTTs of less than 50ms to their parent nodes, in the case of d ¼ 32:
Most nodes are generally within 5 hops from their parent nodes, as shown in Figure 6(b).
Therefore, Laptop organizes nodes into a hierarchical, tree-based structure while taking the
physical locality into consideration.

The second experiment first examines the average length of the routing paths between any two
Laptop nodes in terms of hop count in order to evaluate the routing performance. Figure 7
shows the average path length under various numbers of Laptop nodes in the overlay network.
The experiment also includes 10 runs. Within each run 500 000 routing requests are generated,
and the source and destination nodes of a routing request are randomly assigned. The routing
cache size is set to 64. The average routing path length within 1 000 000 nodes and maximum

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200
RTT

C
D

F

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

2 3 4 5
Hop

8 degree

16 degree

32 degree

8 degree

16 degree

32 degree

(a) (b)

Figure 6. Distribution of RTT and hop counts between a Laptop node and its parent node: (a) CDF of
RTT under various degree of peer; and (b) CDF of hop counts under various degree of peer.

10K 100K 500K 1M
Number of peers

Pa
th

 le
ng

th

8 degree

16 degree

32 degree

Figure 7. Average routing path length under various system sizes.

LOCATION-AWARE PEER-TO-PEER OVERLAY NETWORK 97

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:83–102

DOI: 10.1002/dac

degree of 32 is only about 5.4, as shown in Figure 7. This shows that routing in Laptop is very
scalable in terms of routing path length.

Figure 8 examines the CDF of the routing path length within a maximum degree of 16 under
various nodes in the overlay network. It shows that 70% of the routes have a length less than
6 and that the maximum routing path length is about 7 in the case of 1 000 000 nodes in the
overlay network and maximum degree of 16. Figure 8 shows the average routing path length is
about 5 in this scenario. However, Lemma 4 indicates that the routing path length should be
bounded by dlogd N e; which is equivalent to 4 in the case of a balanced tree. Apparently, this
variance is due to the unbalanced tree structure of the overlay network.

The longest-prefix matching scheme tends to pass messages toward the upstream of the
overlay tree first and then travel down the tree to the destination node. This implies that Laptop
may suffer from load imbalance, since nodes within the higher level labels are more likely to
forward most messages onto the overlay network. Essentially, Laptop adopts a routing cache to
alleviate this load imbalance. We designed an experiment to examine how the routing cache
alleviates the load imbalance by observing the average number of forwardings performed by
nodes of each level labels. The experiment was run on a 100 000 node network within 1 000 000
randomly generated routing requests. Table I shows the average number of forwarding
performed by nodes of each level labels within the experiment of 10 runs. The second column
shows the number of nodes at each level. Most nodes are L4 nodes due to the location-aware
property of Laptop. In the case of a cache size of 0, messages are more likely to travel toward
the root node and then travel down to the destination nodes. As a result, almost all messages
need to pass through the root node. The load can be alleviated significantly with a cache size of
64 or larger as shown in the last two columns. With a routing cache of 64, about 92, 74 and
25%, of the loads are saved at the root, L1 nodes, and L2 nodes, respectively. Although the load
at the higher level nodes is still much higher than at the L4 nodes, it is effectively reduced by the
routing cache. For instance, only 8.4% of the 1 000 000 routing requests needed to be routed
through the root node.

The third experiment examines the routing stretch in terms of delay and hop count. As
mentioned before, the routing stretch refers to the ratio of average inter-node latency on the
overlay network to that on the underlying IP network. The third experiment is run on the
overlay network with 1 000 000 Laptop nodes. The experiment is run 10 times while 500 000

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8
Path length

C
D

F 1M

500K

100K

10K

Figure 8. CDF of routing path length under various system sizes for degree of 16.

C.-J. WU, D.-K. LIU AND R.-H. HWANG98

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:83–102

DOI: 10.1002/dac

routing requests are randomly generated during each run. Figure 9 shows the simulation results
of the routing stretch in terms of latency and hop count, respectively. Again, a higher degree will
yield a better overlay structure and thus a better routing stretch. Laptop performs quite well at a
routing stretch for a system of 1 000 000 nodes. The latency stretch is only about 2.9, and hop-
count stretch is about 4.6. Furthermore, as the number of nodes increase, the routing stretch
does not grow exponentially. In general, Laptop performs quite scalable in the routing stretch.

The last experiment explores Laptop’s behaviour in the presence of node failures. Node
failures are simulated on a Laptop network with 1 000 000 nodes and a maximum degree of 32.
Failed nodes are randomly selected and only single node failures are simulated, i.e. a new node
failure is generated only after the recovery procedure for the previous node failure has been
completed. (A node that fails will be failed for the rest of the simulation time.) In the simulation,
all single node failures can be recovered so that all messages are routed correctly to their
destinations. In this experiment, we evaluate the average routing path as the percentage of failed
nodes in the system increases from 0 to 50%. The simulation results are the average of 10 runs.
During each run, after the desired number of nodes have failed, 500 000 routing requests are
randomly generated. Figure 10 shows the impact of failures on the route quality. The first bar
shows the average routing path length (hop count) prior to those failures; the rest of the bars
show the average length of the routing path after 10, 25 and 50% of the nodes have failed,
respectively. As is evident, even if 50% of the nodes failed in the system, messages are
still routed correctly to their destinations with routing paths that are on average only about
1.5 hops longer.

Figure 11 shows the CDF of the routing path length after various percentages of nodes failed.
As we can see, for a Laptop system with 1 000 000 nodes, and with 50% of the nodes

Table I. Load balance of laptop.

Node level Number of nodes Cache size 0 Cache size 64 Cache size 256

Root 1 999 996 84 186 77 457
Level 1 Node 12.2 136 884 35 189 17 465
Level 2 Node 26.2 23 653 15 282 9 534
Level 3 Node 286.4 3 183 3 138 3 137
Level 4 Node 99 675.2 23 23 23

1

1.5

2

2.5

3

3.5

4

4.5

10K 100K 500K 1M
Number of nodes

L
at

en
cy

 s
tr

et
ch

8 degree

16 degree

32 degree

8 degree

16 degree

32 degree

1

2

3

4

5

6

7

10K 100K 500K 1M
Number of nodes

H
op

 s
tr

et
ch

(a) (b)

Figure 9. Routing stretch under various network sizes: (a) latency stretch; and (b) hop-count stretch.

LOCATION-AWARE PEER-TO-PEER OVERLAY NETWORK 99

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:83–102

DOI: 10.1002/dac

failed, 96.6% of the routes have a length of less than 10, and the maximum length of a routing
path is about 16. In summary, the results of Figures 10 and 11 show that Laptop is quite robust
to node failures.

6. CONCLUSION

In this paper, we presented Laptop which provides a simple, efficient, scalable and robust peer-
to-peer overlay routing service. The performance of Laptop was analysed both mathematically
and via simulations. We have shown that the length of a routing path in Laptop is bounded by
the height of the overlay tree which is Oðlogd NÞ: The complexity of the joining and leaving
procedure is bounded by Oðd logd NÞ: Simulation results showed that Laptop performs efficient

Figure 10. Average routing path under various percentages of nodes failed.

Figure 11. CDF of routing path length under various percentages of nodes failed.

C.-J. WU, D.-K. LIU AND R.-H. HWANG100

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:83–102

DOI: 10.1002/dac

routing for a system with 1 000 000 nodes. Specifically, the average routing path length in the
case of d ¼ 32 is only about 5.4. Of the routes, 70% have a length less than 6 and the maximum
routing path length is about 7, when the maximum degree of a node is set as 16. In addition,
locality was explored and taken into consideration in building the Laptop overlay structure.
About 80% of the nodes are within 3 hops from their parent nodes, and 60% of the nodes have
RTTs of less than 50ms to their parent nodes, in the case of d ¼ 32: The simulation results also
demonstrated the robustness of the Laptop system. Even if 50% of the nodes failed in the
system, messages are still routed correctly to their destinations, with routing paths that are on
average only about 1.5 hop longer.

Laptop differs from other existing P2P systems by its self-organizing location-aware
hierarchical overlay structure and its self-addressing, longest-prefix matching routing scheme.
Specifically, the contribution of Laptop is that it is a feasible overlay network framework that
adopts the location-aware concept. With this fully distributed, highly scalable addressing and
routing scheme, Laptop is applicable to application-level multicast applications, such as
Overcast [18] and NARADA [19], or other peer-to-peer systems, such as the group
communication system [20] and the file storage system [21]. We believe that the concept of
Laptop is also applicable to large-scale distributed computing systems, P2P applications in ad
hoc networks, and others.

REFERENCES

1. Lv Q, Cao P, Cohen E, Li K, Shenker S. Search and replication in unstructured peer-to-peer networks. ACM
International Conference on Supercomputing, NY, U.S.A., June 2002.

2. Napster. Napster, http://www.napster.com
3. Gnutella. Gnutella, http://gnutella.wego.com
4. Stoica I, Robert M, Karger D, Kaashoek MF, Balakrishnan H. Chord: a scalable peer-to-peer lookup service for

Internet applications. ACM Special Interest Group on Data Communications (SIGCOMM), San Diego, U.S.A.,
August 2001.

5. Xu Z, Tang C, Zhang Z. Building topology-aware overlays using global soft-state. ACM Conference on Principles of
Distributed Computing (PODC), Providence, U.S.A., May 2003.

6. Hildrum K, Kubiatowicz J, Rao S, Zhao BY. Distributed object location in a dynamic network. Fourteenth ACM
Symposium on Parallel Algorithms and Architectures (SPAA 2002), Winnipeg, Canada, August 2002.

7. Castro M, Druschel P, Hu YC, Rowstron A. Exploiting network proximity in peer-to-peer overlay networks.
International Workshop on Future Directions in Distributed Computing (FuDiCo), Bertinoro, Italy, June 2002.

8. Ratnasamy S, Stoica I, Shenker S. Routing algorithms for DHTs: some open questions. First Workshop on Peer-to-
Peer Systems (PTPS’02), Cambridge, U.S.A., March 2002.

9. Castro M, Druschel P, Hu YC, Rowstron AI. Topology-aware routing in structured peer-to-peer overlay networks.
Future Directions in Distributed Computing, Lecture Notes in Computer Science, vol. 2584. Springer: Berlin, 2003.

10. Liben-Nowell D, Balakrishnan H, Karger D. Analysis of the evolution of peer-to-peer systems. ACM Conference on
Principles of Distributed Computing (PODC), Monterey, U.S.A., July 2002.

11. Rowstron A, Druschel P. Pastry: scalable, distributed object location and routing for large-scale peer-to-peer
systems. IFIP/ACM International Conference on Distributed Systems Platforms, Heidelberg, Germany, November
2001.

12. Zhao BY, Kubiatowicz J, Joseph A. Tapestry: an infrastructure for fault-tolerant wide-area location and routing.
Technical Report, 2001, UCB/CSD-01-1141.

13. Zhao BY, Duan Y, Huang L, Joseph AD, Kubiatowicz JD. Brocade: landmark routing on overlay networks.
Proceedings of the Workshop on Peer-to-Peer Systems (IPTPS 2002), March 2002.

14. Xu Z, Mahalingam M, Karlsson M. Turing heterogeneity into and advantage in overlay routing. 22nd Annual Joint
Conference of IEEE Computer and Communication Societies (INFOCOM’03), San Francisco, U.S.A., March 2003.

15. Datar M. Butterflies and peer-to-peer networks. 10th European Symposium on Algorithms (ESA’02), Rome, Italy,
September 2002.

16. Savage S, Collins A, Hoffman E, Snell J, Anderson T. The end-to-end effects of Internet path selection. SIGCOMM
Computer Communication Review 1999; 29(4):289–299.

LOCATION-AWARE PEER-TO-PEER OVERLAY NETWORK 101

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:83–102

DOI: 10.1002/dac

17. Medina A, Lakhina A, Matta I, Byers J. BRITE: an approach to universal topology generation. International
Workshop on Modeling, Analysis and Simulation of Computer and Telecommunications Systems (MASCOTS’01),
Cincinnati, U.S.A., August 2001.

18. Jannotti J, Gifford D, Johnson K, Kaashoek F, O’Toole J. Overcast: reliable multicasting with an overlay network.
USENIC OSDI 2000, San Diego, U.S.A., October 2000.

19. Chu YH, Rao S, Zhang H. A case for end system multicast. ACM SIGMETRIC 2000, Santa Clara, U.S.A., June
2000.

20. Castro M, Druschel P, Kermarrec A-M, Rowstron A. Scribe: a large-scale and decentralized application-level
multicast infrastructure. IEEE Journal on Selected Areas in Communications (JSAC) (Special Issue on Network
Support for Multicast Communications), October 2002.

21. Kubiatowicz J, Bindel D, Chen Y, Eaton P, Geels D, Gummadi R, Rhea S, Weatherspoon H, Weimer W, Wells C,
Zhao B. Oceanstore: an architecture for global-scale persistent storage. Proceedings of ACM ASPLOS, ACM,
November 2000.

AUTHORS’ BIOGRAPHIES

Chi-Jen Wu received his MS degrees in Communication Engineering from National
Chung Cheng University, Taiwan in 2004. He is currently a Research Assistant in the
Computer Systems and Communication Lab, Institute of Information Science,
Academia Sinica, Taiwan. His research interests include overlay network, peer-to-
peer network and ad hoc network.

De-Kai Liu received his BS and MS degrees from the National Chung-Cheng
University, Taiwan, in Computer Science and Information Engineering, in 1997 and
1999, respectively. He joined the PhD program at National Chung-Cheng University
in 1999. His current research is focused on P2P networks, mobile ad hoc networks,
and real-time multimedia transmission.

Ren-Hung Hwang received his BS degree in computer science and information
engineering from National Taiwan University, Taipei, Taiwan, in 1985, and the MS
and PhD degrees in computer science from University of Massachusetts, Amherst,
Massachusetts, U.S.A., in 1989 and 1993, respectively.

He joined the Department of Computer Science and Information Engineering,
National Chung Cheng University, Chia-Yi, Taiwan, in 1993, where he is a Professor
and the chair of the Department of Communications Engineering. His research
interests include peer-to-peer applications, ad hoc networks, e-learning, and 3G.

C.-J. WU, D.-K. LIU AND R.-H. HWANG102

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:83–102

DOI: 10.1002/dac

