
2014 1

A Novel Pipeline Approach for Efficient Big Data
Broadcasting

Chi-Jen Wu, Chin-Fu Ku, Jan-Ming Ho, IEEE Senior Member, Ming-Syan Chen, IEEE Fellow

Abstract—Big-Data Computing is a new critical challenge for the ICT industry. Engineers and researchers are dealing with data sets
of petabyte scale in the cloud computing paradigm. Thus the demand for building a service stack to distribute, manage and process
massive data sets has risen drastically. In this paper, we investigate the Big Data Broadcasting problem for a single source node to
broadcast a big chunk of data to a set of nodes with the objective of minimizing the maximum completion time. These nodes may
locate in the same datacenter or across geo-distributed datacenters. This problem is one of the fundamental problems in distributed
computing and is known to be NP-hard in heterogeneous environments. We model the Big-data broadcasting problem into a LockStep
Broadcast Tree (LSBT) problem. The main idea of the LSBT model is to define a basic unit of upload bandwidth, r, such that a node
with capacity c broadcasts data to a set of ⌊c/r⌋ children at the rate r. Note that r is a parameter to be optimized as part of the LSBT
problem. We further divide the broadcast data into m chunks. These data chunks can then be broadcast down the LSBT in a pipeline
manner. In a homogeneous network environment in which each node has the same upload capacity c, we show that the optimal uplink
rate r∗ of LSBT is either c/2 or c/3, whichever gives the smaller maximum completion time. For heterogeneous environments, we
present an O(nlog2n) algorithm to select an optimal uplink rate r∗ and to construct an optimal LSBT. Numerical results show that
our approach performs well with less maximum completion time and lower computational complexity than other efficient solutions in
literature.

Keywords—Big data computing, data delivery algorithm, cloud computing, distributed computing, big data management.

F

1 INTRODUCTION
Big-Data Computing is a new critical challenge that has
sparked major research efforts to reshape ICT industry and
scientific computing in the past few years [1]. The rapid
advances in ICT technologies, such as computation, commu-
nication and storage have resulted in enormous data sets in
business, science and society being generated and analyzed to
explore the value of those data. Currently, both ICT industry
engineers and scientific researchers are dealing with petabytes
of data sets in the cloud computing paradigm [2]. For instance,
in industry, Google, Yahoo!, and Amazon collect huge amount
of data every day for providing information services freely to
people in useful ways. In science, the Large Hadron Collider
(LHC) can generate about fifteen petabytes of data annually,
and thousands of scientists around the world need to access
and analyze those big data sets [3]. Thus the demand for
building a distributed service stack to efficiently distribute,
manage and to process massive data sets has risen drastically.

• Chi-Jen Wu is with the Department of Electrical Engineering, National
Taiwan University, Taiwan and also with the Institute of Information
Science, Academia Sinica, Taiwan.
E-mail: cjwu@arbor.ee.ntu.edu.tw

• Dr. Chin-Fu Ku is with the Institute of Information Science, Academia
Sinica, Taiwan. E-mail: chinfu@iis.sinica.edu.tw

• Dr. Jan-Ming Ho is with the Institute of Information Science, Academia
Sinica, Taiwan. and also with the Research Center of Information Tech-
nology Innovation, Academia Sinica, Taiwan
E-mail: hoho@iis.sinica.edu.tw

• Dr. Ming-Syan Chen is with the Research Center of Information Technology
Innovation, Academia Sinica, Taiwan and also with the Department of
Electrical Engineering, National Taiwan University, Taiwan.
E-mail: mschen@cc.ee.ntu.edu.tw

In the past decade, several efficient techniques are pro-
posed to manipulate huge amount of data, ranging from
terabytes to petabytes, on as many as tens of thousands
of machines. For example, Google presented a distributed
computing framework, namely MapReduce [4], to process
large-scale data effectively, and also proposed Bigtable [5]
for storing structured data on thousands of machines. These
techniques allows users to realize data-parallelism [6]. There
are many significant issues in developing MapReduce ap-
plications, such as, designing the effective strategy for data
decomposition, load balancing, and exchanging data among a
large set of nodes [7]. In particular, for big-data computing,
data transmission overhead is a significant factor of the job
completion time. For instance, it is shown that the total amount
of data transmission time occupies approximately one-third
of the jobs’ running time in the Hadoop tracing logs of
Facebook [8].

In this paper, we focus on the big data broadcasting
operation that is one of the most essential communication
mechanisms in distributed systems. There are a lot of ap-
plication domains that widely apply broadcasting operations,
such as scientific data distributions [9], database transaction
logs backups, the latest security patches, multimedia streaming
applications, and data replica or virtual appliance deploy-
ment [10] among distributed data centers. Since the size of data
becomes so enormous, the impact of broadcasting operation
also becomes increasingly significant.

We consider the big data broadcasting problem in a hetero-
geneous network where nodes may have different uploading
capacities. The big data broadcasting problem is about how the
nodes may obtain a given big data cooperatively in a minimum



2014 2

amount of total transmission time. We assume that there are
n nodes in a heterogeneous network system, denoted by n1,
n2, n3,. . . , nn. And the node n1 is the broadcasting source
that has the data item divided into m chunks of equal size, it
disseminates the data item to all the other nodes. The upload
capacities of those nodes are denoted by c1, c2, c3,. . . , cn,
measured in kilobyte per second (KBps). In addition, we
assume that the downloading capacity of each node is larger
than or equal to its uploading capacity.

Specifically, we focus on investigating the following ques-
tions: What is the relation between a single overlay tree with
a fixed uplink rate and the broadcast operation itself, and how
to construct a single overlay tree that minimizes the maximum
completion time in heterogeneous networks? We introduce the
novel LockStep Broadcast Tree (LSBT) to model the Big
Data broadcast problem [11], [12]. LSBT is a broadcast tree
where data chunks can be sent in a pipelined fashion with a
good throughput. The main idea is to define a basic unit of
upload bandwidth, r, such that the upload link of each node
is divide into several connections each being allocated with
the bandwidth r in broadcasting. In so doing, the number of
upload connections is proportional to the capacity of a node.
Furthermore, we also divide the broadcast data into m chunks.
These data chunks are then broadcast down the tree by the
nodes in a pipeline manner. We show that based on the LSBT
model, the maximum number of rounds required to complete
the broadcast of entire data chunks is O(m + logn) steps,
where n is the number of nodes. In a homogeneous network
environment in which each node has the same uploading
capacity c, we show that the optimal uplink rate r∗ of LSBT is
either c/2 or c/3. For heterogeneous networks, we present an
O(nlog2n) algorithm to select an optimal uplink rate r∗ and
to construct an optimal LSBT. Numerical results show that the
maximum completion time of our LSBT approximates to the
optimum of the big data broadcast problem.

The main contributions of this paper are as follows.
1) Propose the LockStep Broadcast Tree (LSBT) to solve

the big-data broadcasting problem over heterogenous networks
by constructing an efficient pipeline broadcasting tree. We
contribute to the understanding and investigation of how to
design a scalable and practical algorithm to compute an LSBT
such that its maximum completion time is minimized.

2) Design a novel polynomial-time algorithm to select the
optimal uplink rate r∗ for building an optimal LSBT. To the
best of our knowledge, this work is the first study to investigate
the relation between a single overlay tree (with a fixed uplink
rate r∗) and the broadcast operation based on uplink sharing
model. Unlike the previous works [13], [14] in which the
criteria is to maximize system throughput, to the best of our
knowledge, this is the first to study the problem of designing
a tree overlay network aiming at minimizing the maximum
completion time.

3) Introduce several original applications based on the LSBT
model. Specifically, given a data delivery deadline, one can
estimate whether a delivery job through a specific network
could meet its deadline based on the LSBT model. Developers
may take advantage of this property to can maximize the per-
formance of collaborative applications in datacenter networks.

Fig. 1. Scope of our contributions

The rest of this paper is organized as follows. In the
Section 2, we give background of the big data broadcasting
problem. We state the general big data broadcasting problem
and introduce our LSBT model and its applications in the
Section 3. The detail of our optimal algorithm for LSBT
problem is presented in Section 4. Numerical evaluation are
presented in Section 5. The Section 6 describes the context
of related work. We conclude this paper and present ideas for
future research in Section 7.

2 BACKGROUND

Suppose that m data chunks of equal size are initially held
by a single source node in a network. The data broadcasting
problem is about disseminating these m chunks to a popu-
lation of n nodes in as less time as possible, subject to the
uploading link capacity constraints of nodes. This problem
has been studied in the context of many different network
scenarios, such as homogenous and heterogenous networks.
For interested readers, a comprehensive survey can be found in
the article [15]. In this paper we focus on big data broadcasting
problem in heterogenous networks. Figure 1 illustrates these
solutions to the big data broadcasting problem in heterogenous
networks along multiple dimensions.

For the centralized approach, we first look at the results
of the Non-Chunk based approach. Khuller and Kim [11]
showed that the problem of minimizing the completion time
for broadcasting a single chunk (a message) in heterogenous
networks in a NP-hard problem. The authors also showed the
Fastest-Node-First (FNF) heuristic method gets a performance
ratio of at most 1.5 and the FNF results in optimal solutions in
many cases for single chunk broadcast. In additional, Liu [16]
showed that the FNF heuristic method is optimal in only two
classes of nodes. However, the data broadcasting problem is
more complicated when the data consists of multiple chunks
and it is still an open problem: Can data broadcasting prob-
lem with multiple chunks be solved by a polynomial time
algorithm? [17].

Within the Chunk-based methods, the optimal solution has
been shown in the article [12]. The authors presented an
uplink-sharing model for the well-known data broadcasting
problem and formulated data broadcasting problem as a mixed



2014 3

integer linear programming (MILP). However, as the numbers
of variables in the linear programming grows exponentially n
and m, this method is not practical for large n and m. Goetz-
mann et. al. [18] show that if peer capacities are heterogeneous
and symmetric, this problem becomes strongly NP-hard. A re-
cent result [19] presented two heuristic algorithms to schedule
data chunks transfer between nodes. The time complexity of
both two centralized algorithms is O(m× nlogn)2.

For the decentralized approach, many decentralized systems
have been proposed to disseminate chunks via an overlay
topology. With overlay-based approaches, nodes maintain a
set of overlay links to other nodes and exchange chunks
among neighboring nodes. BitTorrent [20], SplitSteam [21],
Bullet [22] and Bee [23] are some examples of the overlay-
based approach. In [23], the authors showed Bee can approach
lower bound of the maximum completion time in heterogenous
networks by simulations. In this paper, we retain the interest
in the centralized approaches, thus interested readers can find
a comprehensive survey of these decentralized systems in the
article [24].

3 PROBLEM STATEMENT

The assumption in our model is similar to the Uplink-Sharing
model proposed by J. Mundinger et al. [12]. Each node can
simultaneously connect to other nodes and the available upload
capacity of a link is shared equally amongst the uploading
connections. Based on the Uplink-Sharing model, we model
the nodes and data transfer networks as the nodes and edges
of a direct graph. We assume that there are n nodes in a
network system, denoted by n1, n2, n3,. . . , nn, where the
broadcasting source is node n1 and the n−1 nodes have upload
capacities c = {c1, c2, c3,. . . , cn}, measured in kilobyte per
second (KBps). Besides, we also assume that the source node,
n1, has the data item that is divided into m chunks of equal
size, to disseminate to all the other nodes, and c1 is larger
than or equal to that of other nodes. Finally, we assume that
the downloading capacity of each node is larger or equal to
its uploading capacity. This is true for virtually all existing
network access technologies, e.g., ADSL or cable modems.

3.1 LockStep Broadcast Tree (LSBT) problem
To reduce the complexity of the original data broadcasting
problem [11], [12], we model it as the LockStep Broadcast
Tree (LSBT) problem. By this we define a performance goal
for a single LSBT, that is achieving minimum completion
time by optimizing the basic bandwidth allocation, r, among
LSBT nodes. Different from original problem, we allow data
be divided into chunks and sent in a pipeline fashion. Formally,
given a set of n nodes N = {n1, . . . , nn}, each node ni

is connected to the network via an access link of upload
capacities ci and a size of chunks B. The LSBT problem
is to determine the upload bandwidth r∗ of each uplink to
build the LSBT t, in which node ni should allocate upload
bandwidth r∗ to each connection to its child nodes in order to
minimize the maximum completion time D for propagating a
data chunk. Note that it is possible to handle simultaneously
several connections and to fix the bandwidth allocated to each

Fig. 2. The two examples of LSBT. The tree (a) presents
the optimal LSBT with r∗ = 1, the maximum completion
time D is 2 units of time and tree (b) requires 3 units of
time. Assume that the size of data chunk B = 1 and the
digits specify these node’s upload capacity.

connection [25]. In the following definition, we define the
number of edges k in each node for LSBT.

Definition 1. For each LSBT node ni, the number of edges
(uploading connections) ki is depended on its upload capacity,
i.e., ki = ⌊ cir ⌋, for 1 ≤ i ≤ n and ∀ r ∈ R+.

The formal mathematic definition of the maximum comple-
tion time D is shown as follows.

r∗ = arg min
r∈R+

D(c, r) = arg min
r∈R+

h(t(c,r))∑ B

r
, (1)

where t(c,r) is the LSBT with the set of upload capacity c and
an upload bandwidth r, h(t(c,r)) describes the function that
returns the height of the LSBT t(c,r).

Note that this general Equation (1) removes restrictions on
the location of nodes in the network, it only calculates the
propagation delay of data chunks from the root to the leaves.
Moreover, LSBT model addresses the data broadcasting prob-
lem by building a single broadcast tree, in which nodes can
transmit data chunks in a pipeline manner. Thus the maximum
completion time D is the summation of the transmission time
of a data chunk (i.e., B

r ) in each level of the LSBT t(c,r).
Example. Figure 2 shows the two examples. Given a set of

eleven nodes having upload capacities {3, 3, 2, 2, 2, 1, 1, 1, 1,
1, 1}, we can build at most 1111−2 different broadcasting trees
(by Cayley’s formula [26]). However, there exists an optimal
LSBT constructed by sorting the nodes according to their
number of edges in non-increasing order. We will show this
important property of LSBT in the next section (Theorem 3).
In Figure 2, the tree (a) presents the optimal LSBT ta with
upload bandwidth r∗ = 1. Here, we assume that the size of
data chunk B = 1. Since h(ta) = 2, the maximum completion
time D of tree ta should be 2 (i.e., 1

1 + 1
1 = 2) units of time

(by Equation 1). The other tree tb in Figure 2 is not an optimal
LSBT. The maximum completion time D of tree tb is 3 units



2014 4

of time (i.e., 1
1.5 + 1

1.5 + 1
1.5 + 1 = 3). Note that in tree tb

these gray nodes in the 3th level only can provide one unit of
upload capacity to their child nodes even if r is specified as
1.5.

3.2 Potential Applications of LSBT
We envision that our LSBT could be well-suited for a host of
applications. There are at least three broad applications where
LSBT can be applied: 1) topology control in BitTorrent-like
systems; 2) data broadcasting in cloud computing software
stack; 3) energy conservation in peer-assisted content delivery
services. We consider these in the context of network systems
that are heterogenous network environments.

First, Our algorithm of LSBT could be useful in topology
control in BitTorrent-like systems [20]. BitTorrent is a peer-
to-peer application that aims to enable the fast and efficient
distribution of large files among a large group of nodes. In Bit-
Torrent, each peer maintains a constant number of concurrent
upload connections (usually five). Please see the article [20]
for more detailed descriptions. Recent studies [23], [27], [28]
show that the fixed upload connections limit is harmful to
uplink utilization and peer fairness in BitTorrent. However,
how to decide an appropriate number of concurrent uploads
in BitTorrent still is a challenge. The proposed algorithm for
LSBT may provide an insight into selecting the number of
concurrent uploads in BitTorrent-like systems.

Second, LSBT can be integrated into the cloud computing
software stack. For example, Apache Hadoop1 is a software
framework that allows for the distributed processing of large
data sets across clusters with thousands machines. Thus an
efficient and scalable way to disseminate a large volume of
data among machines is a significant challenge in Hadoop [8].
Another example is the delivery services of OpenStack2, it
is designed for virtual appliance deployment in datacenters.
Our LSBT can be integrated into the delivery services of
OpenStack software stack. A number of algorithms and pro-
tocols have been proposed, implemented, and studied [8],
[29]. For any data delivery job initiated by cloud computing
softwares, there is an associated deadline. The main advantage
of LSBT is to enable these cloud software stacks to predict
and schedule the associated deadline of a data delivery job.
Specifically, given a data delivery deadline, LSBT may be
possible to determine that can the network system meet the
deadline or what is the possible deadline for the delivery job.
This advantage can severely impact application performance
in datacenter networks.

For example, the police office of New York City attempts
to build a public street surveillance system with many thou-
sands of cameras. The design should include a distributed
datacenter architecture to store and to process the large-scale
video streams. These street videos are kept in order to allow
retrieval and review in the event a crime was committed. The
success of the design relies on the cooperation and elastic
resource utilization of these multiple distributed datacenters.
Thus when a crime event was committed, the related video

1. http://hadoop.apache.org/
2. http://openstack.org/

streams should be disseminated from the hosted datacenter
to other datacenters for rapidly computation. LSBT may be
possible to enable software stacks in the distributed datacenter
architecture to predict and schedule the associated deadline
of a data delivery job. It may bring the benefits in terms
of elastic resource utilization and managing delivery of the
computational jobs.

Finally, Our algorithm for LSBT could be useful to answer
the question: what is the maximum streaming rate that can be
sustained for all receivers within a peer-assisted content deliv-
ery service provider. Many content delivery service providers,
such as PPLive3, Akamai4, that may rely on participating users
contributing uplink bandwidth to scale up delivery services
to hundreds of thousands of users. However, if the total con-
tributed bandwidth from the service provider and participating
users can not support to the demanded quality of services
(ex., H.2645/768kbps), the service provider should increase
contributed bandwidth (servers) from server-side. For energy
conservation and environmental issues, it is an interesting and
significant issue to investigate how to dynamically increase
or decrease the number of servers in accordance with the
demanded QoS and the number of active users. Given a set
of node upload capacities c, our LSBT algorithm can roughly
sketch out the coarse-grained QoS level (i.e., r∗ Kbps) of the
current system and be used to regulate the energy consumption
in server-side. Thus, our LSBT model can be used for creating
a systematic approach that arranges server-side resources for
peer-assisted content delivery protocols. To the best of our
knowledge, little work [30] has been conducted on energy
conservation in peer-assisted content delivery services. In
future work, we aim to apply our LSBT algorithm to the
research direction.

4 OPTIMAL LOCKSTEP BROADCAST TREE

In this section, we present our LSBT algorithm that is also
a heuristic for the data broadcasting problem. Given a set of
node upload capacities c, we aim at finding an optimal LSBT,
that is a data broadcast tree where data chunks can be sent in
a pipelined manner. We provide a thorough analysis of LSBT
in both homogenous and heterogenous network systems. We
first clarify LSBT in homogenous networks cases and describe
the LSBT algorithm in heterogenous network cases later.

4.1 Homogenous Network Systems

We present the optimal solution of LSBT when the upload
capacities of nodes are identical. In general, we assume that
all nodes have upload capacity of c. Mundinger et al. [12]
have presented the optimal scheduling solution for broad-
casting multiple messages on the uplink-sharing model. The
following Theorem 1 (Mundinger’s theorem) is proved in
the article [12]. If each round costs one unit of time, then
the maximum completion time of the optimal solution is
m + ⌊log2 n⌋, where m is the number of chunks and n the

3. http://www.pptv.com/
4. http://www.akamai.com/
5. http://en.wikipedia.org/wiki/H.264/MPEG-4 AVC



2014 5

number of nodes. Note that each node can only upload one
data chunk to another node in each round. By contrast, each
node can send a data chunk to k other nodes simultaneously
in the LSBT model.

Theorem 1. (Mundinger’s theorem [12]) In homogenous
network systems, the minimum number of rounds required to
complete the broadcasting of all data chunks is m+ ⌊log2 n⌋,
where m is the number of data chunks and n is the number
of nodes.

In our LSBT model, the maximum completion time D is
equal to Equation (1). However, due to the upload capacities
of all nodes are equal, it can be simply expressed as follows
(note that r = c

k ).

D =
B

r
logk n

=
kB

c

lnn

ln k
,

where B is a size of data chunks.
Let G = B lnn

c , we have

D = G k

ln k
. (2)

Set dD
dk = 0,

dD

dk
=
G
ln k
− G

(ln k)2
= 0. (3)

The Equation (3) implies that

ln k = 1,

k = e. (4)

It can be shown that Equ. 2 is a convex function. Thus we
have the following theorem in discrete model.

Theorem 2. In homogenous network systems, the optimal
value r∗ for LSBT is either c/2 or c/3 that makes the LSBT
minimize the maximum completion time, where c is the upload
capacity of all nodes.

Figure 3 illustrates a simple numerical example of LSBT in
a homogenous network, in which we set n = 100, c = 1, and
B = 1. We then calculated the maximum completion time
D in Equation (2). In the results, all nodes have k upload
connections, the value of k depending on the considered
scenario. We can see that the numerical results significantly
depend on the value of k in homogenous network systems,
and the LSBT can minimize the maximum completion time
when k is equal to e as we shown in Equ. 4 in continuous
model.

4.2 Heterogenous Network Systems
We now consider the general LSTB model in which nodes’
upload capacities may be different. First, we present an
algorithm to construct an optimal LSBT for a given rate r.
We then give both the upper and lower bounds of the value of
r∗. Finally we present an O(n log2 n) algorithm to select the
optimal upload bandwidth r∗ of each uplink and to construct
the optimal LSBT.

2 4 6 8 10 12 14 16 18 20
10
15
20
25
30
35
40
45
50
55
60

 

 

Th
e 

M
ax

im
um

 C
om

pl
et

io
n 

Ti
m

e

The number of uploading connections k

Fig. 3. Numerical results of LSBT in homogenous net-
works. Assume that the number of nodes n = 100, the
size of data chunk B = 1, and the upload capacity of all
nodes c = 1.

We now present the algorithm GLSBT to generate an LSBT
t which is shown to be optimal for the given rate r. Given a
set of nodes N = {n1, n2, · · · , nn} with ci as the upload
capacity of node i, 1 ≤ i ≤ n, and a real number r to denote
the rate of the LSBT. We assume that the nodes are given in
non-increasing order of their upload capacity, i.e., cj ≤ ci if
i < j. In the algorithm GLSBT, given r as the rate of the
LSBT, the degree of each node ni is given by the line 4. The
algorithm GLSBT generates the LSBT t by assigning a node
nq as the parent of the node nl if and only if q is the smallest
integer such that l ≤ 1+

∑q
i=1 ki, where 1 ≤ l ≤ n. It is easy

to show that the time complexity of the algorithm GLSBT
is O(n), where n is the number of nodes. Thus we have the
following lemma.

Lemma 1. The algorithm GLSBT (Algorithm 1) can be made
to run in O(n) time in a network system of size n.

Then we present the following theorem to show that the
algorithm GLSBT gives an optimal LSBT for the given rate
r.

Theorem 3. Given an uplink rate r∗, building the LSBT t
that is constructed in a way that any child node’s out-degree
is always less than or equal to its parent’s and providing that
t is optimal in terms of the maximum completion time D.

Proof: Suppose that we have a set of n nodes, and
k1, k2, k3, . . . , kn are the umber of edges of each node.
Then by Definition 1: ki = ⌊ cir ⌋, for 1 ≤ i ≤ n. Let
k1, k2, k3, . . . , kp be the edges of nodes in a LSBT as shown
as Figure 4, where p is the smallest integer such that

∑p
1 kp ≥

(n− 1). There are two cases impact on the height of LSBT.
Case I) Assume that an optimal LSBT t is constructed in the

order of (k1, k2, ki, . . . , kj , kp) and ki < kj , for 1 ≤ i < j ≤
p. Let h be the height of t. If ki and kj are interchanged, then
there exists another optimal LSBT t′ with height h′ in order
by (k1, k2, kj , . . . , ki, kp). Since kj > ki, h′ is less than or



2014 6

Algorithm 1 GLSBT: An algorithm for generating a LSBT t

Input: a set of upload capacities c and a rate r for LSBT t
Output: a LSBT t
1: BEGIN
2: /* Computing the degree of the node ni */
3: for i← 1 to n do
4: LSBTree[i].Degree← ⌊ci/r⌋
5: end for
6: NodeIndex← 1
7: NodeCount← 2
8: while NodeCount ≤ n do
9: k ← LSBTree[NodeIndex].Degree

10: for j ← 1 to k do
11: LSBTree[NodeCount].parent← NodeIndex
12: NodeCount = NodeCount+ 1
13: end for
14: NodeIndex = NodeIndex+ 1
15: end while
16: return LSBTree[]
17: END

Fig. 4. An illustration of generating a LSBT

equal to h. Therefore t′ is an optimal LSBT (i.e., Bh′

r∗ ≤
Bh
r∗ ).

Case II) Assume that an optimal LSBT t is created by the
order (k1, k2, ki, . . . , kp, kj) and ki < kj , for 1 ≤ i < j ≤ n.
Similarly in switching kj and ki, we get the new LSBT t′.
Since kj > ki, the height of t′ is also less than or equal to
the height of t. Therefore t′ is an optimal LSBT.

Then we provide lower bound and upper bound of the value
of r∗ as follows.

Lemma 2. (Lower bound) In heterogenous network systems,
the lower bound of r∗ in the optimal LSBT is larger than or
equal to c1

n−1 , where c1 ≥ ci for 1 < i ≤ n.

Proof: If this is not true (i.e., r∗ < c1
n−1 ), then we have

the optimal LSBT t′ where r′ < c1
n−1 . There exists another

LSBT t, where h(t) = 1. The value of r∗ in t is equal to
c1

n−1 and the value of D in t is equal to B(n−1)
c1

. However, the
value of D in t′ is larger than B(n−1)

c1
. This contradicts the

assumption that r∗ < c1
n−1 .

Lemma 3. (Upper bound) In heterogenous network systems,
the upper bound of r∗ in the optimal LSBT is less than

∑
ci

n−1 ,
for 1 ≤ i ≤ n.

Proof: A tree has n vertices and n− 1 edges. It implies

r∗ × (n− 1) ≤
n∑

i=1

ci.

However, the leaf nodes in LSBT can not contributes their
upload capacities, thus

r∗ ≤
∑(n−l)

i=1 ci
n− 1

<

∑n
i=1 ci

n− 1
,

where l is the number of the leaf nodes in a LSBT.
Next, we give the details of the algorithm for the selection

of r∗. As described in Equation 1, r ∈ R+, so it means
the possible value of r is infinite, even both the upper and
lower bounds of the value of r∗ are given. Since the number
of r is infinite, an efficient discretization algorithm of r is
critical. In LSBT, we propose a simple division algorithm
to discretize the value of r. This algorithm comes from the
observation: the number of upload connection (i.e., k) in each
LSBT node is a positive integer and 1 ≤ k ≤ (n − 1). Thus
we enumerate all possible candidates of r∗ which make k an
integer. Algorithm 2 presents our solution to discretize the
value of r. Let CandidateSet denote the set of the possible
value of r∗, and the binary search will be performed on it.

In Algorithm 2, it first reduces the redundance of ci by
preforming an union operation (named UnionSet) of each
ci, for 1 ≤ i ≤ n and sorting the set (in line 4-7). Next,
the loop from line 8 to 18 is used to discretize the value
of r and to filter out the extreme r values restricted by the
upper and lower bounds. In the loop, it gets candidates of r
by computing u/k, ∀ u ∈ UnionSet and 1 ≤ k ≤ (n − 1),
and puts those candidates into the CandidateSet. Note that
the number of candidates is O(n2) if each LSBT node has
an unique upload capacity. However, the filter scheme can
significantly reduce the number of candidates. We will show
the experimental results in the next section.

Before we present the binary search algorithm for selecting
the value of r∗, we first show the following lemma and
theorem which provide properties to derive the efficient binary
search algorithm on r∗.

Lemma 4. Given the discrete spectrum of r for building a
LSBT t, the value of r∗ occurs in one of the values that change
the height of t.

Proof: Suppose that the lemma is not true, there exists
an optimal LBST t̂ built with the value of r̂, its height is h,
and the next value of r̂ in the discrete spectrum (labeled as
r′ and r′ = r̂ + δ, δ > 0) does not increase the height of t̂.
According to Equation (1) and r′ > r̂, there is another LSBT
t′, its height is h, and the maximum completion time of t′ is
less than the one of t̂. This contradicts the assumption that t̂
is an optimal LSBT of height h.

Lemma 5. The height of any rooted tree with n nodes must
be less than log2 n if the out-degree of every internal node is
greater than 1.

Proof: We prove it by contradiction. Assume there exists
a tree, t, with n nodes having the height greater than log2n



2014 7

Algorithm 2 A discretization algorithm for the candidateset
Input: a set of upload capacities c and the upper and lower

bounds of r∗

Output: CandidateSet
1: BEGIN
2: UnionSet← empty
3: CandidateSet← empty
4: for i← 1 to n do
5: UnionSet← UnionSet ∪ ci
6: end for
7: UnionSet← Sort(UnionSet)
8: for k ← 1 to n− 1 do
9: for all u in UnionSet do

10: r ← u/k
11: if r ≥ upper then
12: continue
13: else if r < lower then
14: break
15: end if
16: CandidateSet← CandidateSet ∪ r
17: end for
18: end for
19: return CandidateSet
20: END

while all internal nodes in t have out-degree greater than 1.
Given t’s height greater than log2n, we get

h > log2n⇒ n < 2h. (5)

We now count the number of nodes in each level of t. Because
every internal node has out-degree greater than 1, at level i
there are at least 2i nodes.

n ≥ 20 + 21 + 22 + · · ·+ 2h−1 + c

≥ 2h − 1 + c, (6)

where 1 ≤ c ≤ 2h. Please note that the root node is at level
0 and the c is the number of nodes at the last level. There is
no such n fitting both Eq. 5 and Eq. 6, so that no such tree t
exists.

Theorem 4. The height of any optimal Lock-Step Broadcast
Tree (LSBT) with n nodes is less than or equal to 2× log2n,
where n is the number of nodes.

Proof: We prove it by contradiction. We assume there is
a optimal LSBT, t, with n nodes and its height is greater than
2× log2n.
By the Lemma 5, we know that in t the out-degree of some
internal nodes must be equal to 1 (i.e., less than 2). We make
a tree, t′, by setting the rate r′ = r

2 , where r is the rate for t.
Since the out-degree of all internal nodes in t′ must be greater
than or equal to 2, the height of t′ must be less than log2n by
the Lemma 5.

The completion time for t′ will be

D(t′) =
h′

r′
≤ log2n

r
2

=
2× log2n

r
.

Algorithm 3 The r∗ search algorithm for the optimal LSBT
Input: a set of upload capacities c and CandidateSet
Output: r∗ and D∗

1: BEGIN
2: CandidateSet← Sort(CandidateSet)
3: D∗ ←∞
4: r∗ ← empty
5: for h← 1 to 2(⌊log2 n⌋+ 1) do
6: right← 1
7: left← Sizeof(CandidateSet)
8: while right ≤ left do
9: mid← ⌊(left+ (right− left)/2)⌋

10: r ← CandidateSet[mid]
11: t← GLSBT (c, r)
12: if left− right = 1 and t.Height = h then
13: d← t.BroadcastingT ime
14: if d < D∗ then
15: r∗ ← r
16: D∗ ← d
17: end if
18: else
19: break
20: end if
21: if h ≤ t.Height then
22: right← mid
23: else
24: left← mid− 1
25: end if
26: end while
27: end for
28: return r∗ and D∗

29: END

Given D(t) = h′

r′ > 2×log2n
r , we got D(t′) < D(t) which

contradicts that t is an optimal LSBT.
Algorithm 3 describes our scheme to search the value of

r∗ to build an optimal LSBT. Searching the r∗ is much like
searching a binary search tree, except that instead of searching
the value of r, it make a seeking condition both on the value
of r and the height of LSBT h. Algorithm 3 takes as input
a set of upload capacities c and CandidateSet obtained by
Algorithm 2.

First, Algorithm 3 takes O(nlogn) time to sort the
CandidateSet in the line 2. Then for each different height of
LSBT (in line 5-27), it searches the optimal value of r∗ and
returned the best value of r∗ and the maximum completion
time (in line 28). The value of h is restricted to 2(⌈log2n⌉+1)
(in line 5) because of Theorem 4. Thus we can only check the
height of LSBT from 1 to 2(⌊log2 n⌋+1), it runs in O(log2n)
time on a LSBT tree of height 2(⌊log2 n⌋ + 1). During the
loop (in line 8-26), Algorithm 3 performs a straightforward
generalization of the binary searching procedure, it takes
O(log2n2) time. (Note that n2 is the size of the candidate
set.) In line 11, GLSBT () is an O(n) function for building
a LSBT according to a specified r and it returns the LSBT
t (by Lemma 1). Lines 13-19 check to see if we have now
discovered the value of r∗ for the specified h, and update



2014 8

Fig. 5. An illustration of the binary search algorithm for
selecting the value of r∗ in the LSBT of height h = 2

the best r∗ and D∗ if we have. Note that by Lemma 4, the
line 12 presents the successful condition for searching. The
line 19 terminates the search unsuccessfully, i.e., an optimal
LSBT of height h does not exist. In summary, the procedure
runs in O(2log2n× log2n

2×n) time, thus we have proved the
following theorem.

Theorem 5. The r∗ search algorithm (Algorithm 3) for an
optimal LSBT can be made to run in O((nlog2n)) time on a
set of upload capacities c.

Theorem 6. The r∗ search algorithm (Algorithm 3) correctly
computes an optimal LSBT of any set of upload capacities c.

Our proof of Theorem 6 is based on the following obser-
vation.

Observation 1. Given a set of upload capacities c, the
Algorithm 2 shall generate the all candidates of possible r∗.
Because of the number of upload connection (i.e., k) in each
LSBT node is a positive integer and 1 ≤ k ≤ (n− 1), where
n is the number of nodes.

The proof of Observation 1 is a straight-forward inductive
argument on the value of k, 1 ≤ k ≤ (n− 1).

Proof: (Theorem 6) The r∗ search algorithm (Algorithm
3) clearly finishes in a finite number of steps. The number
of executions of the for-loop (line 5-27) is restricted to
2(⌈log2n⌉+ 1) by Theorem 4.

For each height of LSBT trees (in while-loop, line 8-26), it
searches the optimal value of r for the LSBT t’s height = h
in the all possible candidates of r∗ based on Observation 1.

During the body of the for-loop (line 5-27), it keeps the best
value of r∗ and the maximum completion time of an optimal
LSBT tree (line 14-17). This statement is easily seen to be
true.

Now we give an example of the r∗ search algorithm
(Algorithm 3) as follows.

Example. Figure 5 shows the illustration of searching
results by applying Algorithm 3 to the example in Figure 2.
The numerals in these gray areas in Figure 5 mean the heights
of these LSBTs constructed by each different value of r.

Fig. 6. An example of LSBT for multiple data sources

Recall that the given set of eleven nodes come with a set of
upload capacities {3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1} in Figure 2.
The numbered dashed lines specify the series of steps of the
searching operation. According to Lemma 2 and Lemma 3,
we can obtain the lower bound (i.e., 0.3) and upper bound
(i.e., 1.8) in the example of Figure 2. As shown in Figure 5,
the CandidateSet consists of ten elements that returned
by Algorithm 2. The points on horizontal axis presents the
spectrum of the possible value of r after the sorting operation,
and the topmost curve specifies the maximum completion
time D procured by individual values of r. In the running
example, we consider h = 2, i.e., selecting the value of
r∗ for the optimal LSBT with height 2. The bottom lines
in Figure 5 illustrates the variances of right, left and mid
in each step. The total number of step during the searching
operation is five and the searching operation is terminated
when mid = right = 8 and left = 9 (line 13 in Algorithm 3).

Finally, we show that the maximum number of rounds
required to complete the broadcast of entire data chunks in an
optimal LSBT is O(m+ logn) steps. The proof of Theorem 7
requires to combine Theorem 2 and Theorem 4.

Theorem 7. In an optimal LSBT, the minimum number of
steps required to complete the broadcast of entire data chunks
is O(m + logn), where m is the number of data chunks of
equal size and n presents the number of nodes in a network
system.

4.3 Multiple Data Sources
A number of issues require further consideration. Specifically,
in big data computing, data is typically partitioned among mul-
tiple sources. Our current LSBT algorithm does not address
the partitioned data problem, we discuss the possible solution
as follows.

One of the most straightforward way to apply the current
LSBT algorithm to a partitioned data sources environment
is to build multiple LSBT broadcast trees for each data
item. For example, as shown in the Figure 6, there are two
data items, i.g., item#1 and item#2, in the multiple data
sources environment. In this example, we can build two LSBT



2014 9

broadcast trees for those data items easily to broadcast multiple
data sources. Note that the time complexity of our LSBT
building algorithm is O((nlog2n)), it should be efficient and
effective.

5 NUMERICAL EVALUATION

In this section, we analyze the performance of our LSBT
through numerical evaluations. The algorithm developed in
this paper can be embodied in the control plane of big
data service stacks to form node relationships that achieve
the capacity. In the numerical results, we have implemented
three approaches including FNF heuristic [11], DIM-Rank
heuristic [19] and our LSBT. All of above heuristic algorithms
are centralized, however in DIM-Rank, the cost of computing
the broadcast schedule is non-trivial. Note that DIM-Rank is
the best algorithm in [19] by comparing other state-of-the-
art algorithms. The node’ uplink capacities distribution is set
according to the actual Internet that is reported in [31] and their
respective fractions in the node population are summarized in
Table 1.

5.1 The Details of Compared Techniques
In Section 2, we briefly discussed prior techniques for broad-
casting big data in heterogeneous networks. We discuss here
these works in more detail.

5.1.1 FNF heuristic
The Fastest-Node-First (FNF) heuristic technique [32] is a
common centralized algorithm used to find a broadcast tree in
heterogeneous networks. The algorithm is simple and easy to
implement. We briefly describe it as follows: in each iteration
of FNF heuristic, it selects a sender form the set of nodes
that have received the message and a receiver which has
not received the message. Obviously at each iteration, FNF
heuristic needs to make two decisions. First, it has to decide
which sender is going to send the message to the new receiver.
The second decision is to choose the new receiver among the
nodes which have not been added to the tree yet. The intuition
of FNF heuristic is that always picking the fastest sender and
the fastest receiver is the best way to deliver the message
quickly. By this way, FNF heuristic can generate a greedy tree
through which broadcast operations can be implemented. Note
that the FNF heuristic algorithm is restricted to one message.
Thus we use it to broadcast multiple chunks one by one.

5.1.2 DIM-Rank
The DIM-Rank technique is a centralized heuristics algorithm
for multi-chunk dissemination in heterogenous networks. In
DIM-Rank, a centralized scheduler is used to arrange data
chunk delivery between nodes based on the pair-wise band-
width and latency measured among all participating nodes. In
other hand, the scheduler is used to make decisions on the
selections of senders, receivers and chunks at each iteration.
In DIM-Rank, two schedule metrics are developed to help
scheduler make decisions. First, Chunk Spread is the total
number of nodes that have the same data chunk. Second, Node

TABLE 1
Node Uplink Capacity Distribution

Uplink Distribution
Uplink Capacity (Kbps) 128 384 1000 5000
Fraction (%) 20 40 25 15

1k 10k 100k

0

100k

200k

300k

400k

 

 

Th
e 

si
ze

 o
f c

an
di

da
te

 s
et

The number of nodes (n)

 A naive approach 
 Our discretization algorithm

Fig. 7. The size of candidateset versus the number of
nodes n

Rank is the summed inverse of spread of all data chunks that a
node contains, e.g., if a node contains rare data chunks or many
chunks then it’s rank is higher. At each iteration, DIM-Rank
technique sorts nodes first by their node rank from lowest to
highest, and then sorts nodes by their upload capacity (highest
to lowest). After sorting, the scheduler picks receivers from
the sorted list for each sender, and the lowest-spread chunk is
chosen and transmitted. For more details, please refer to the
article [19].

5.2 Experimental Results
We first study the size of candidate set that derived from
the Algorithm 2. Figure 7 shows the effect when the total
number of nodes to be broadcasted is increased. Note that
the x-axis is also a log-scale (log10n). Algorithm 2 has a
clear superior performance over the naive approach. Moreover,
as the number of node is increased, the gap widens between
Algorithm 2 and the naive approach making it very desirable.
Intuitively, in the naive approach, the worst case of the size of
CandidateSet is the number of nodes multiplied by the size
of UnionSet. Thus, the solution of Algorithm 2 may give a
good heuristics for reducing the size of CandidateSet in a
large scale network.

We now show the maximum completion time of the three
algorithms under various scenarios. We consider networks with
n= 100, 1000, 10000 and 100000 nodes. The size of file is
100MB and the number of data chunks is 1000. Figure 8(a)
shows the total time each algorithm taking to broadcast the
file to all the nodes. Note that the x-axis is a log-scale
of number of nodes and thus a straight line indicates good
scalability, such as log-scale (log10 n). Figure 8(b) shows the
computation time of each algorithm to schedule the broadcast
job. By the simulation results, LSBT performs the best while



2014 10

100 1000 10000 100000
750

1500

2250

3000

3750

4500

5250

6000

 

 

Th
e 

M
ax

im
um

 C
om

pl
et

io
n 

tim
e

The number of nodes

 FNF
 DIM-Rank
 LSBT

(a) The Maximum Completion time (the unit on y-axis is second)

100 1000 10000 100000

0

10M

20M

30M

40M

50M

 

 

Th
e 

C
om

pu
ta

tio
n 

Ti
m

e 
(m

ill
is

ec
on

ds
)

The number of nodes

 FNF
 DIM-Rank
 LSBT

(b) The Computation Time (the unit on y-axis is million milliseconds)

Fig. 8. Performance comparison with increasing the number of nodes (the size of file is 100MB and the number of
data chunks is 1000)

2 4 8 16 32 64 128 256 512 1024
1000

1500

2000

2500

3000

3500

4000

4500

5000
 

 

Th
e 

M
ax

im
um

 C
om

pl
et

io
n 

Ti
m

e

The number of Chunks (m)

 FNF
 DIM-Rank
 LSBT

Fig. 9. The number of chunks versus the maximum
completion time (the size of file is 100MB and the number
of nodes is 100, and the unit on y-axis is second)

2 4 8 16 32 64 128 256 512 1024

0

10k

20k

30k

40k

50k

 

 

Th
e 

C
om

pu
ta

tio
n 

Ti
m

e 
(m

ill
is

ec
on

ds
)

The number of Chunks (m)

 FNF
 DIM-Rank
 LSBT

Fig. 10. The number of chunks versus the computation
time (the size of file is 100MB and the number of nodes is
100, and the unit on y-axis is thousand milliseconds)

1G 10G 100G 500G 1T

0

1M

2M

3M

4M

5M

6M

 

 

Th
e 

M
ax

im
um

 C
om

pl
et

io
n 

tim
e

The size of delivery data

 FNF
 DIM-Rank
 LSBT

Fig. 11. The maximum completion time versus the size of
delivery data (the number of data chunks is 1000 and the
number of nodes is 1000, and the unit on y-axis is million
milliseconds)

FNF heuristics gives a poor performance, which is expected
because FNF does not take the advantage of the pipeline
manner. We notice that the computation time of DIM-Rank is
significant, and it is because the time complexity of DIM-Rank
is O(m× nlogn)2. In a n = 10000 network, the computation
time of DIM-Rank requires almost 15 hours (on a sever with
Intel Xeon 2.33GHz and 8GB RAM). Thus we do not plot the
result of n =100000 network.

Figure 9 plots the effect when the number of data chunks
(m) is increased. The size of file is 100MB and the number of
nodes is 100. We can see the result of FNF do not depend on
the value of m. Note that the x-axis is also a log-scale (log2m).
The maximum completion time of LSBT is significantly lower
(at least about 60%) than the one performed by the two
other algorithms. Another interesting remark is that DIM-Rank
performs worse than FNF when m = 2. It is because in the
concept of DIM-Rank algorithm, it prefers to let every node



2014 11

obtain a data chunk first. Thus the low-capacity nodes may
slow down the maximum completion time.

Figure 10 plots the effect of the computation time when the
number of data chunks (m) is increased. The size of file is
100MB and the number of nodes is 100. We can see the results
of LSBT and FNF do not depend on the value of m. Note
that the x-axis is also a log-scale (log2m). The computation
time of LSBT is significantly lower than the one performed
by DIM-Rank algorithms.

Figure 11 plots the effect when the size of the delivery
data is increased. The number of data chunks is 1000 and the
number of nodes is 1000. The maximum completion time of
LSBT is significantly lower than the one performed by the two
other algorithms when the size of the delivery data is increased
from 1 gigabyte to 1 terabyte. By the simulation results, LSBT
shows its ability to offer high performance of big data delivery
in heterogeneous datacenter networks. Note that the y-axis of
Figure 11 is million seconds.

6 RELATED WORK

The data broadcasting problem established by Edmonds [33]
since the 1970s and has been studied in many articles. The
broadcast problem is the core of every data distribution system,
especially in peer-to-peer (P2P) overlay fields, it is of great
interest to current efficient P2P data distribution systems,
based on a tree or mesh design [21]–[23]. While there is
much work on system design and measurement studies of
P2P data distribution systems [24], few papers work on
theoretical analysis and fundamental limitations of P2P data
distribution systems. Ezovski et al. [34] proposed an optimal
network topology and the associated scheduling policy to
achieve the min-min times, by assuming that the file is broken
into infinitesimally small chunks such that there is almost
no forwarding delay. The authors claimed that the proposed
scheme which achieves min-min times can also achieve the
minimum average finish time. However, Chang et al. [35]
disproved the claim in [34]. In [13], the authors propose
several distributed algorithms to optimize the throughput of a
broadcasting operation. However, they do not consider degree
constraints in each node. In [14], Beaumont et al. consid-
ered the maximizing throughput problem of broadcasting a
large message in heterogenous networks. They introduced the
bounded degree multi-port model to model the capabilities
of the nodes and proved that the data broadcasting problem
of maximizing the overall throughput is NP-Complete. Liu et
al. [36] studied the maximum streaming rate problem of peer-
assisted streaming systems. They use a multi-tree formulation
and consider per-tree degree bounds. However, they assume
that the degrees of all nodes are equal, except for the source
node which has unbounded degree. The same authors consider
global per-node degree bounds in the article [37].

7 CONCLUSION

In this paper, we studied the classical data broadcasting
problem from an algorithmic point of view. We formalized the
problem into the LockStep tree (LSBT) model in which we
consider at the same time the design of such a single overlay

tree (with a fixed uplink rate) and the maximum completion
time of this model. To the best of our knowledge, this work is
the first study to investigate the relation between a single over-
lay tree with a fixed uplink rate and the maximum completion
time both in heterogeneous networks. In addition, we envision
that our LSBT could be well-suited for a host of applica-
tions. We also proposed a novel polynomial-time algorithm
to select the optimal uplink rate r∗ for building an optimal
LSBT. The time complexity of our algorithm is O(n log2 n).
Interesting future work involves obtaining good heuristics to
the data broadcasting problem. A more challenging version
of the problem is to demand multiple LSBTs, we leave it as
an interesting future direction. Moreover, in inter-datacenter
networks, how to build an optimal LSBT regarding to the
physical network topology is another interesting problem.

ACKNOWLEDGMENT

The work was supported in part by the National Science
Council of Taiwan, R.O.C., under Contracts NSC100-2219-
E-001-002 and NSC99-2221-E-001-013-MY3. The authors
would like to thank Prof. Kwei-Jay Lin for comments on an
earlier draft of this paper. The authors would like to thank
the anonymous reviewers for their valuable comments and
suggestions to improve the manuscript.

REFERENCES

[1] R. E. Bryant, R. H. Katz, and E. D. Lazowska, “Big-data computing:
Creating revolutionary break throughs in commerce, science, and soci-
ety,” In Computing Research Initiatives for the 21st Century., 2008.

[2] A. Szalay and J. Gray, “2020 computing: Science in an exponential
world,” Nature 440, 413-414, March, 2006.

[3] G. Brumfiel, “High-energy physics: Down the petabyte highway,” Nature
469, 282-283 January, 2011.

[4] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Proc. of Operating Systems Design and Implementation
(OSDI), 2004.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, , and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” Proc. of Operating Systems Design
and Implementation (OSDI), 2006.

[6] W. D. Hillis and G. L. Steele, Jr., “Data parallel algorithms,” Commu-
nications of the ACM, vol. 29, pp. 1170–1183, December 1986.

[7] U. Rencuzogullari and S. Dwarkadas, “Dynamic adaptation to available
resources for parallel computing in an autonomous network of worksta-
tions,” Proc. of ACM SIGPLAN PPoPP, 2001.

[8] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Man-
aging data transfers in computer clusters with orchestra,” Proc. of ACM
Special Interest Group on Data Communication (SIGCOMM), pp. 98–
109, 2011.

[9] D. Nukarapu, B. Tang, L. Wang, and S. Lu, “Data replication in
data intensive scientific applications with performance guarantee,” IEEE
Transactions on Parallel and Distributed Systems, aug. 2011.

[10] C. Peng, M. Kim, Z. Zhang, and H. Lei, “Vdn: Virtual machine image
distribution network for cloud data centers,” Proc. of IEEE International
Conference on Computer Communications (INFOCOM), 2012.

[11] S. Khuller and Y.-A. Kim, “Broadcasting in heterogeneous networks,”
Algorithmica, vol. 48, no. 1, Mar. 2007.

[12] J. Mundinger, R. Weber, and G. Weiss, “Optimal scheduling of peer-to-
peer file dissemination,” Journal of Scheduling, vol. 11, no. 2, 2008.

[13] L. Massoulie, A. Twigg, C. Gkantsidis, and P. Rodriguez, “P2p stream-
ing capacity under node degree bound,” Proc. of IEEE International
Conference on Computer Communications (INFOCOM), 2007.

[14] O. Beaumont, L. Eyraud-Dubois, and S. K. Agrawal, “Broadcasting
on large scale heterogeneous platforms under the bounded multi-port
model,” Proc. of IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2011.



2014 12

[15] S. M. Hedetniemi, S. T. Hedetniemi, and A. Liestman, “A survey
of gossiping and broadcasting in communication networks,” Networks,
1988.

[16] P. Liu, “Broadcast scheduling optimization for heterogeneous cluster
systems,” J. Algorithms, vol. 42, no. 1, Jan. 2002.

[17] K. Wang, J. Li, and L. Pan, “Fast file dissemination in peer-to-
peer networks with upstream bandwidth constraint,” Future Generation
Computer Systems, vol. 26, July 2010.

[18] K.-S. Goetzmann, T. Harks, M. Klimm, and K. Miller, “Optimal file
distribution in peer-to-peer networks,” Proc. of The 22nd International
Symposium on Algorithms and Computation (ISAAC), 2011.

[19] M. Deshpande, N. Venkatasubramanian, and S. Mehrotra, “Heuristics
for flash-dissemination in heterogenous networks,” Proc. of the 13th
international conference on High Performance Computing, 2006.

[20] B. Cohen, “Incentives build robustness in bittorrent,” Proc. of ACM
Workshop on Economics of peer-to-peer systems (P2PECON), 2003.

[21] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, “Splitstream: High-bandwidth multicast in a cooperative en-
vironment,” Proc. of ACM Symposium on Operating Systems Principles
(SOSP), 2003.

[22] D. Kosti, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
bandwidth data dissemination using an overlay mesh,” Proc. of ACM
Symposium on Operating Systems Principles (SOSP), 2003.

[23] C.-J. Wu, C.-Y. Li, K.-H. Yang, J.-M. Ho, and M.-S. Chen, “Time-
critical data dissemination in cooperative peer-to-peer systems,” Proc.
of IEEE Global Telecommunications (GLOBECOM), 2009.

[24] A. Passarella, “A survey on content-centric technologies for the current
internet: Cdn and p2p solutions,” Computer Communications, 2012.

[25] M. A. Brown, “Traffic control howto. chapter 6. classless queuing
disciplines,” http://tldp.org/HOWTO/Traffic-Control-HOWTO/classless-
qdiscs.html, 2006.

[26] A. Cayley, “A theorem on trees,” Quarterly Journal of Mathematics,
1889.

[27] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing and im-
proving a bittorrent networks performance mechanisms,” Proc. of IEEE
International Conference on Computer Communications (INFOCOM),
2006.

[28] R. Thommes and M. Coates, “Bittorrent fairness: Analysis and improve-
ments,” Proc. of Workshop on the Internet, Telecommunications and
Signal Processing (WITSP), December 2005.

[29] Murder, “https://github.com/lg/murder.”
[30] S. ul Islam, K. Stamos, J.-M. Pierson, and A. Vakali, “Utilization-aware

redirection policy in cdn: A case for energy conservation,” Proc. of
Information and Communication on Technology for the Fight against
Global Warming, 2011.

[31] S. Saroiu, K. P. Gummadi, and S. D. Gribble, “A measurement study of
peer-to-peer file sharing systems,” Proc. of Multimedia Computing and
Networking (MMCN), 2002.

[32] M. Banikazemi, V. Moorthy, and D. Panda, “Efficient collective com-
munication on heterogeneous networks of workstations,” Proc. ofIEEE
International Conference on Parallel Processing, pp. 460–467, 1998.

[33] J. Edmonds, “Edge-disjoint branchings, in combinatorial algorithms,”
Algorithmics Press, 1972.

[34] G. M. Ezovski, A. Tang, and L. L. H. Andrew, “Minimizing average
finish time in p2p networks,” Proc. of IEEE International Conference
on Computer Communications (INFOCOM), 2009.

[35] C. Chang, T. Ho, M. Effros, M. Medard, and B. Leong, “Issues in peer-
to-peer networking: a coding optimization approach,” Proc. of IEEE
International Symposium on Network Coding (NetCod), 2010.

[36] S. Liu, R. Zhang-Shen, W. Jiang, J. Rexford, and M. Chiang, “Perfor-
mance bounds for peer-assisted live streaming,” Proc. of ACM SIGMET-
RICS Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS), 2008.

[37] S. Liu, M. Chen, S. Sengupta, M. Chiang, J. Li, and P. A. Chou,
“P2p streaming capacity under node degree bound,” Proc. of IEEE
International Conference on Distributed Computing Systems (ICDCS),
2010.

Chi-Jen Wu works as a Postdoc researcher at
the Institute of Information Science of Academia
Sinica in Taiwan. He received his Ph.D. degree in
EECS from National Taiwan University in 2012.
Chi-Jen was a research assistant at the Institute
of Information Science of Academia Sinica be-
fore completing his PhD. His research interests
include Content-Centric Networking, Future In-
ternet, Peer-to-Peer systems and Mobile Data
Management. He is a student member of the
ACM.

Chin-Fu Ku received the B.S. degree in Com-
puter Science from National Chiao Tung Uni-
versity, Taiwan, R.O.C., in 1994, and the M.S.
degree in Computer Science and Engineering
from Yuan Ze University, Taiwan, R.O.C., in
1996. He is a Postdoc researcher at the Institute
of Information Science of Academia Sinica in
Taiwan. His research interests include: Internet
protocol, multimedia streaming and performance
modeling.

Jan-Ming Ho received his Ph.D. degree in elec-
trical engineering and computer science from
Northwestern University in 1989. He received
his B.S. in electrical engineering from National
Cheng Kung University in 1978 and his M.S. at
Institute of electronics of National Chiao Tung
University in 1980. Dr. Ho joined the Institute of
Information Science, Academia Sinica as asso-
ciate research fellow in 1989, and was promoted
to research fellow in 1994. He visited IBM’s T. J.
Watson Research Center in summer 1987 and

summer 1988, and the Leonardo Fibonacci Institute for the Foundations
of Computer Science, Italy in summer 1992. In 2004-2006, he was jointly
appointed by National Science Council, Taiwan, where he served as
Director General of Division of Planning and Evaluation. His research
interests cover the integration of theory and applications, including infor-
mation retrieval and extraction, knowledge management, combinatorial
optimization, multimedia network protocols and their applications, web
services, bioinformatics, and digital library and archive technologies. Dr.
Ho also published results in VLSI/CAD physical design. He is Associate
Editor of IEEE Transaction on Multimedia. He was Program Chair of
Symposium on Real-time Media Systems, Taipei, 1994 - 1998, General
Co-Chair of International Symposium on Multi-Technology Information
Processing, 1997 and will be General Co-Chair of IEEE RTAS 2001.
He was also steering committee member of VLSI Design/CAD Sympo-
sium, and program committee member of several previous conferences
including ICDCS 1999, and IEEE Workshop on Dependable and Real-
Time E-Commerce Systems (DARE’98), etc. In domestic activities, he
is Program Chair of Digital Archive Task Force Conference, the First
Workshop on Digital Archive Technology, Steering Committee Member
of the 12th VLSI Design/CAD Symposium and International Conference
on Open Source 2001, and is also Program Committee Member of the
13th Workshop on Object-Oriented Technology and Applications, the
8th Workshop on Mobile Computing, 2001 Summer Institute on Bio-
informatics, and Workshop on Information Society and Digital Divide.



2014 13

Ming-Syan Chen received the B.S. degree in
electrical engineering from National Taiwan Uni-
versity, Taipei, Taiwan, and the M.S. and Ph.D.
degrees in Computer, Information and Control
Engineering from The University of Michigan,
Ann Arbor, MI, USA, in 1985 and 1988, re-
spectively. He is now a Distinguished Research
Fellow and the Director of Research Center of
Information Technology Innovation (CITI) in the
Academia Sinica, Taiwan, and is also a Distin-
guished Professor jointly appointed by EE De-

partment, CSIE Department, and Graduate Institute of Communication
Eng. (GICE) at National Taiwan University. He was a research staff
member at IBM Thomas J. Watson Research Center, Yorktown Heights,
NY, USA from 1988 to 1996, the Director of GICE from 2003 to 2006,
and also the President/CEO of Institute for Information Industry (III),
which is one of the largest organizations for information technology in
Taiwan, from 2007 to 2008. His research interests include databases,

data mining, mobile computing systems, and multimedia networking,
and he has published more than 270 papers in his research areas. In
addition to serving as program chairs/vice-chairs and keynote/tutorial
speakers in many international conferences, Dr. Chen was an associate
editor of IEEE TKDE and also JISE, is currently on the editorial board
of Very Large Data Base (VLDB) Journal, Knowledge and Information
Systems (KAIS) Journal, and International Journal of Electrical Engi-
neering (IJEE), and is a Distinguished Visitor of IEEE Computer Society
for Asia-Pacific from 1998 to 2000, and also from 2005 to 2007. He
holds, or has applied for, eighteen U.S. patents and seven ROC patents
in his research areas. He is a recipient of the NSC (National Science
Council) Distinguished Research Award, Pan Wen Yuan Distinguished
Research Award, Teco Award, Honorary Medal of Information, and K.-
T. Li Research Breakthrough Award for his research work, and also the
Outstanding Innovation Award from IBM Corporate for his contribution
to a major database product. He also received numerous awards for
his research, teaching, inventions and patent applications. Dr. Chen is a
Fellow of ACM and a Fellow of IEEE.


