
Time-Critical Data Dissemination in Cooperative
Peer-to-Peer Systems

Chi-Jen Wu∗†, Cheng-Ying Li†, Kai-Hsiang Yang†, Jan-Ming Ho† and Ming-Syan Chen∗†
∗Department of Electrical Engineering, National Taiwan University, Taiwan

†Institute of Information Science, Academia Sinica, Taiwan
{cjwu,cyli,hoho,khyang,mschen}@iis.sinica.edu.tw

Abstract—How to rapidly disseminate a large-sized file to many
recipients is a fundamental problem in many applications, such
as updating software patches and distributing large scientific
data sets. In this paper, we present the Bee protocol, which is
a cooperative peer-to-peer data dissemination protocol aiming
at minimizing the maximum dissemination time for all peers
to obtain time-critical data, such as critical patch updates. Bee
is a decentralized protocol that organizes peers into a random-
ized mesh-based overlay and each peer only works with local
knowledge. We devise a slowest peer first strategy to boost the
speed of dissemination, and a topology adaptation algorithm that
provides the most efficient utilization of the network capacity. Bee
is designed to support network heterogeneity and deal with the
flash crowd arrival pattern without sacrificing the dissemination
speed. We present experimental results on the performance of Bee
in terms of dissemination time and show that its performance
can approach lower bound of the maximum dissemination time.

I. INTRODUCTION

How to rapidly and efficiently distribute a large file across
the Internet has become an interesting problem in the peer-
to-peer (P2P) research community and some real applica-
tions, such as updating the software patches of Massively
Multiplayer Online Games (MMOG) and operation systems
in a flash crowd arrival pattern. Suppose that a large-sized
critical data is initially held at a single server and we have to
disseminate it to other N peers rapidly, how can we minimize
the time it takes for all peers to have the complete data? This
problem is very practical for the time-critical applications in
the Internet.

Currently, a number of efforts focus on building P2P content
delivery systems [1]–[4] to address the data dissemination
problem. BitTorrent [1] is one of the pioneers of the file
dissemination systems, and has become a prominent Inter-
net application, both in terms of user popularity and traffic
volumes [5]. BitTorrent is designed to reduce the load from
congested servers and improve the download time of software.
However, in such emergency conditions, such as dissemination
of the critical patch updates for security or deployment of
scientific data between institutions, e.g. CERN, all participants
have to obtain data fast. For this reason, all participants
should be cooperative for the fastest dissemination, the fairness
mechanism, such as tit-for-tat scheme, are often unnecessary.

In this paper, we are interested in the time-critical data
dissemination problem in which the maximum dissemination
time of all the peers instead of dissemination time of individual
peers is minimized. We begin by giving a formal definition

of the data dissemination problem, and introduce the lower
bound of the maximum dissemination time. We then present
a decentralized protocol, called Bee, to address the time-
critical data dissemination problem. Bee is a best-effort and
and cooperative designed protocol to increase throughput of
the system and individual peer. In the Bee protocol, peers are
self-organizing into a random mesh and download blocks from
neighboring peers. Moreover, Bee peer leverages a slowest
peer first strategy and a topology adaptation algorithm to
maximize the speed of dissemination. Under the slowest peer
first strategy, a peer always transmits blocks to the neighbors
that have the fewest number of downloaded blocks, i.e., the
slowest neighbors. To decide the number of connections of
a peer, Bee protocol embeds a topology adaptation algorithm
based on peer’s upload bandwidth. Our experimental results
show that our Bee protocol can approach the lower bound
of the data dissemination problem for both homogenous and
heterogeneous network environments. Specifically, we make
the following contributions in this paper:

We introduced the lower bound of the dissemination time
for the data dissemination problem. And we proposed a P2P
data dissemination protocol to minimize the data dissemination
time for the time-critical applications. Although the authors [6]
studied this problem, they focus on the theory deduction, we
differ from them on analyzing how to design a protocol to
approach the lower bound. The experimental results show that
the new design can significantly reduce the overall download
time and is scalable to a large number of users. Bee is very
suitable for using to distribute the time-critical or emergency
data to end users.

The rest of the paper is organized as follows. In next section,
we discuss related work. In Section III, we first define the
data dissemination problem. Section IV describes an overview
and design details of the Bee protocol. Section V explains
our simulation methodology and presents the performance
results of the simulation study. We conclude this paper with a
summary of main research results in Section VI.

II. RELATED WORK

In recent years, there is a tremendous interest in building
content delivery networks to address the data dissemination
problem, which aims to deliver a large-sized file to a group
of nodes spread across a wide-area network. For the content
delivery networks, several related studies, such as Bullet [3],

2

Splitstream [7], and [8] build multiple overlay mulitcast trees
or overlay meshes to establish a more efficient system to
deliver data in the Internet. Though creating and maintaining
multicast trees among peers provides an alternative solution
for content delivery, however, it may incur high maintenance
cost due to the characteristics of churn effect in a P2P network.

The popular content distribution system, BitTorrent [1] is
successful for its efficiency in delivering a large file. There are
two key mechanisms used in the BitTorrent system, namely,
the ”Tit-For-Tat” (TFT) peer selection policy and the local
rarest first piece selection (LRF) strategy. Many varieties
of BitTorrent are proposed to improve its performance. Wu
et al. [9] try to reduce the download time of overall Bit-
Torrent peers for flash crowd arrival pattern. In additional,
Slurpie [2] focuses on reducing load on servers and clients
download times when the number of downloading clients
is huge. Crew [4] is a new gossip-based protocol for data
dissemination, and it performs a faster dissemination than the
BitTorrent protocol in experiments, and [10] is another similar
work. Compared with the above efforts, our work makes a
difference contribution on minimizing data dissemination time.

Content Delivery Networks (CDN), such as Akamai Tech-
nologies [11], have been proposed to improve accessibility for
the commercial companies. CDNs are dedicated collections
of servers located strategically across the wide-area Internet.
Content providers, such as multimedia video sources, con-
tract with commercial CDNs to distribute content. CDNs are
compelling to content providers because the responsibility
for distributing content is offloaded to the CDN infrastruc-
ture. Many new infrastructures for the CDNs have recently
been developed to focus on distributing large files, such as
CoBlitz [12] system. These systems offer a stable and perfor-
mance predictable content delivery architecture, especially for
the businesses that want to offload their bandwidth but need
to delivery a large content. However, regardless of how many
nodes in the CDNs are deployed, in case number of users
grows too fast, performance of these systems may degrade
significantly.

III. DATA DISSEMINATION PROBLEM

In this section, we formally define the data dissemination
problem, and provide the lower bound of the problem. Let
us consider the problem of disseminating a file F to a set
of n peers, N = {1, 2, . . . , n}. We also assume that a peer
leaves the system once completely receiving the file. Let S be
the server (which is called a ”seed” in the rest of this paper)
that has the file F in the beginning, and let Size(F) denote
the size of file F in bytes. Each peer i ∈ N in this system
has its upload capacity Ui and download capacity Di. And Us

represents the upper bound of the upload bandwidth utilization
of seed S. We also assume that Ui ≤ Di, to model the state-of-
the-art Internet technologies, such as ADSL or Cable modems.
Due to the asymmetric nature of these network technologies,
Di is usually 3 to 5 times higher than Ui in practice. Let ti(F)
denote the time it takes for peer i to receive the complete file
F . Note that ti(F) denotes the time interval starting at the

time peer i sends its request to the server and ending at the
time it receives the entire file F . Before formally defining the
problem, we define the following two performance metrics
first.

Definition 1 (Average Dissemination Time):

ADT (F) =
1
|N |

∑

i∈N
ti(F).

Definition 2 (Maximum Dissemination Time):

MDT (F) = max{ti(F)}, i ∈ N .

Assume that the server and all n peers exist in the system
from time t = 0. Then MDT (F) is the time it takes for all
peers to finish receiving the complete file F . Now we define
the data dissemination problem as follows.

Definition 3 (Data Dissemination Problem): Given a
server and n peers in a system, and each peer i has the
upload capacity Ui and download capacity Di, where
i = {1, 2, . . . , n}, the problem is to find a transmission
scheme M to minimize the MDT (F). According the
definition 2, the problem can be formulated as a min-max
problem as follows.

min{MDT (F)}. (1)

A. Ideal Dissemination Time (Lower Bound)

In this section, we focus on studying the lower bound of
the dissemination time, which is also referred to as ideal
dissemination time in this paper. Let us denote the actual
amount of data uploaded by peer i as fi, where fi ≤ Ui×ti(F)
and those peer i receives in return as ri, where ri ≤ Di×ti(F).
Without loss of generality, we assume that, the total amount of
download data is equal to the total amount of upload data for
the seed and all peers. Hence, we have the following equation.

fs +
n∑

i=1

fi =
n∑

i=1

ri. (2)

Since we are interested in estimating the lower bound of
the dissemination time, we assume that upload capacity of
each peer i is assumed to be fully utilized, i.e., we have fi =
Ui× ti(F). Besides, the total amount of download bandwidth
must be equal to n×Size(F), because all peers have the entire
file F at the end. Then, we can extend the Eq. (2) as follows
to deal with the ideal dissemination time for the general case.

Us × ts(F) +
n∑

i=1

Ui × ti(F) = n× Size(F). (3)

Here, we have a min-max problem with its objective func-
tion in Eq. (1) subject to the constraints given by Eq. (3).
Since the constraint is a linear equation, or more specifically,
a hyperplane in (n + 1)-dimension, and the optimal solution
for the constrained optimization problem can be obtained if
and only if when all ti are the same, i.e.,

ts(F) = t1(F) = t2(F) = · · · = tn(F). (4)

3

Applying this results to Eq. (3), we then have a lower bound
of MDT (F), denoted by T (F), for file F , as follows.

T (F) =
n× Size(F)
Us +

∑n
i=1 Ui

.

Thus, we have the following lemma.
LEMMA 1: Let T ∗(F) denote the MDT (F), of a feasible

schedule of the data dissemination problem for a given file F .
Then we have:

T ∗(F) ≥ max
{

T (F),
size(F)

Us
,

size(F)
min{Di}

}
, (5)

where the right-hand right of Eq. (5) is the lower bound of the
dissemination time in any algorithm for the data dissemination
problem.

IV. BEE DESIGN

In this section, we present the Bee protocol to approach the
ideal dissemination time. In a Bee system, the content (file)
is divided into many fix-sized blocks Bi, i = {1, 2, . . . , m},
which is the smallest transfer unit in the system. We chose
256KB for the block size, which is the same as that used
in most other P2P protocols. In the following, we start with
an overview of the Bee protocol, followed by the detailed
descriptions of its various components.

A. Overview of Bee
At a concept of overview, Bee constructs a random mesh

overlay among a set of peers. Fig. 1 illustrates the scheme of
a Bee system. Suppose that a large content is announced from
a single server, and particularly we assume that Us > Ui in
the system, and a lot of peers want to download the content
at the same time. Note that it is reasonable, for example,
an enterprise of online game, ex Blizzard needs to distribute
the critical patch to end users. The download bandwidth of
Blizzard’s servers should be large than end-users. Each peer
gets into contact with a centralized well-known register server
and retrieves a contact list of an uniform random subsets of all
peers in the system. The size of contact list is a small constant,
say 160.

Based on the contact list, the peer discovers other peers, and
exchanges update messages with them. The update message
contains a bitstring about which blocks are available, and
the bitstring can be used to coordinate the block requesting
decisions without global information. After exchanging update
messages, a peer could send requesting block messages to all
peers in the contact list, and download blocks while uploading
blocks it owns to other peers simultaneously. In a peer to peer
network, peers may leave the system dynamically. In order
to maintain connectivity of the overlay network, peers in Bee
system will periodically, say 30 seconds, ask the register server
to obtain a new contact list of replacement peers.

The key components in the Bee system include (1) a slowest
peer first strategy for selecting peers to upload blocks, (2)
a block selection strategy for requesting blocks, and (3) a
topology adaptation algorithm for adapting the number of con-
nections according to a peer’s network capacity. The detailed
descriptions of these components are presented as follows.

Register Server

new Bee peer

Request for

contact list

Reply a
contact list

(n3,n4,n6,n7,n8,)

n9

n9

Exchange update

message

E
x

ch
an

g
e u

p
d

ate

m
essag

e

Exchange
update

m
essage

Exchange update
message

E
x
ch

an
g
e

u
p
d
ate

m
essag

e

n8 n7

n6

n4

n3

Fig. 1. A scheme of a Bee system.

B. Slowest Peer First Strategy

In this section, we describe the slowest peer first strategy.
The design principle of the slowest peer first strategy is to keep
all the upload capacity of peers full of data. This means that a
peer can always find some peers to upload blocks to exhaust
its upload capacity. Based on the slowest peer first strategy,
a peer i always picks a slowest downloading peer among the
contact list of the peer i, where the slowest downloading peer
is the peer that has the least number of blocks. Consequently,
the peer i can always upload blocks to the picked peer, because
there is a high probability that the peer i has blocks that
the picked peer does not have. From this point of view, Bee
protocol adapts the slowest-peer-first strategy as a means to
gain high utilization of the upload bandwidth of each peer.

After a peer joins into a Bee system, it periodically sends
the requesting block messages to the peers in the contact list
for downloading the blocks it lacks. When a peer starts to
upload blocks to other peers, it maintains a working set, and
tries to exhaust its network capacity to upload blocks to the
peers in its working set. The working set consists of peers
in the previous working set and those selected from the new
contact list. The size of working set is adapted by a topology
adaptation algorithm that we will discuss later.

The advantage of the slowest peer first strategy is to enable
peers to diminish the MDT significantly. Disadvantage of the
strategy is that it may increase the time it takes for the faster
downloading peers to download the file. However, our goal is
to minimize the MDT of the system. Note that this slowest
peer first strategy dose not require all peers leaving at the
same time, every peer can immediately depart the Bee system
at an arbitrary time. We will show it in Section V.

C. Block Selection Strategy

Once a peer establishes connections with its neighboring
peers, it needs to determine which blocks to request from
which peers, based on the local knowledge (the available
blocks in all peers among the contact list). The Bee protocol
employs the local rarest first strategy for choosing new blocks
to download from neighboring peers. The local rarest first
strategy is proposed in BitTorrent protocol, and it can prevent
the last block problem and increase the file availability in a
BitTorrent system. The main advantage of the local rarest first

4

strategy is to overcome the last block problem by favoring
rare blocks. This strategy equalizes the file block distribution
to minimize the risk that some rare blocks are lost when
peers owning them fail or depart the system. Bharambe et
al. [13] study the local rarest first strategy by simulations and
show that this strategy can address the last block problem
efficiently. Another advantage of the local rarest first strategy
is to increase the probability that a peer is useful to its
neighboring peers because it owns the blocks that others do
not have, and thus it helps to diversify the range of blocks in
the system.

D. Topology Adaptation Algorithm

Bee is designed to adapt to different network environments
by a topology adaptation algorithm. In general, the available
bandwidth estimation is a non-trivial problem in practical
network applications, so it is hard to decide how many upload
connections a peer should have in the Bee protocol. For the
sake of simplicity, we do not use the network bandwidth
estimation techniques to determine the precise upload capacity
of each peer. Instead, we assume that a user can input a coarse-
grained bandwidth estimate, such as the form ADSL, Cable,
T3, etc, that provides an initial maximum upload capacity
estimate, U . In addition, we assume that peers (including
the seed) have limited upload/download bandwidth but the
Internet backbone is assumed to have infinite bandwidth. This
assumption is reasonable, because the previous study [14]
showed that the Internet backbone indeed has low utilization
and The Internet’s bottleneck almost always occurs at the last
mile. Based on the two assumptions, we can develop a simple
topology adaptation algorithm for the Bee protocol.

A simple adaptation approach is to set the upload rate for
each upload connection to a same value, say rate α, for all
peers. Hence, if a peer i has maximum upload capacity of Ui,
it establishes k = dUi

α e connections, where α ≤ Ui, ∀ i ∈ N .
So in the Bee protocol, each peer establishes k concurrent
upload connections. Note that k should be bounded by the
size of the contact list. The idea is to identify capacity, i.e.,
k, of each peer so that number of peers served by a peer
would match its own capacity. Each peer can fully utilize its
upload capacity and maximize its contribution to the system
throughput.

V. PERFORMANCE EVALUATION

To understand the performance of our protocol, we built
a discrete-event simulator to simulate the distribution of a
large file from a server to a large number of peers in the
Bee protocol. Our simulator is based on the paper [13]. In our
simulator, the network model associates a download link and
an upload link bandwidth with each peer in order to make it
suitable for modeling asymmetric access networks.

A. Road-map of Simulations

We made our simulations to compare the dissemination time
in the Bee system with the lower bound of dissemination time
and the required time in BitTorrent. Besides, we consider three

TABLE I
THE UPLOAD/DOWNLOAD BANDWIDTH DISTRIBUTION

Network Type Downloadlink Uplink Fraction

Homogeneous 1500kbps 384kbps 100%

Heterogeneous 1500kbps 384kbps 50%

3000kbps 1000kbps 50%

More heterogeneous 784kbps 128kbps 20%

1500kbps 384kbps 40%

3000kbps 1000kbps 25%

10000kbps 5000kbps 15%

network scenarios to evaluate our protocol, each representing
a different degree of heterogeneity in their upload/download
capacity and the peer join pattern is set to flash crowd.

The bandwidth distribution of each network condition is
presented in Table I. Especially, the more heterogeneous
condition with four types of peers is the actual peer bandwidth
distribution which is reported from Gnutella clients [15]. We
also present the results of a realistic join pattern that derived
from a tracker log for a Redhat 9 distribution torrent of a
BitTorrent system [13]. Unless otherwise specified, we use
the following settings in our experiments. First, we used a file
size of 200MB with a block size 256KB (so a file contains
800 blocks). The seed’s upload capacity is 6000Kbps. The
number of contact list is 80 in both the Bee and BitTorrent
system. Then the number of initial seeds is only one in all of
our experiments. In addition, based on our experiments [16],
we choose the uploading rate α = 25 Kbps in the following
experiments.

B. Homogeneous Environment

We start by comparing the performance of Bee with that of
BitTorrent protocol in the homogeneous environment. We use
the default settings as mentioned in the above description. All
peers join the system at the initial stage, and leave the system
when they finish their downloading.

First, we consider the impact of the scalability on the
performance of Bee and BitTorrent. We use a different number
of peers from 500 to 5000 in experiments, and all peers join
system at the initial stage and remain in the system until they
have a complete file. Fig. 2 (a) shows the normalized MDT .
In our experiments, Bee always shows better performance in
terms of MDT than BitTorrent regardless of network size.
Moreover, the difference ratio between Bee and the lower
bound is only 1.1 at a network with 5000 peers. Fig. 2 (b)
shows the cumulative distribution of the number of complete
peers in a network with 2000 peers. The results show that our
Bee can efficiently diminish the maximum dissemination time,
and the MDT of Bee is only 4218 seconds that is very close
to the lower bound.

C. Heterogeneous Environment

Next, we evaluate the performance of Bee and BitTorrent
protocol in a heterogeneous network that consists of two types

5

(a) MDT (b) CDF

Fig. 2. Scalability comparison in homogeneous environments.

(a) MDT (b) CDF

Fig. 3. Scalability comparison in heterogeneous environments.

peers, one of which has a higher download/upload capacity
(3000/1000 Kbps) than the other (1500/384 Kbps). In this
scenario, the lower bound is 2333 seconds. Fig. 3 (a) shows
the normalized MDT metric for Bee and BitTorrent, and we
can see that Bee is almost twice faster than the BitTorrent in
the MDT metric. We also show the cumulative distribution of
the number of complete peers in a network with 2000 peers in
Fig. 3 (b). The result shows that a peer with higher capacity
leaves faster than the peer with lower capacity in BitTorrent.
After the peers with higher capacity leave system, the system
capacity deceases significantly and the dissemination time of
the peers with lower capacity will be prolonged.

D. More Heterogeneous Environment

In this section, we repeated the same experiment in a more
heterogeneous network. Actually, it presents a very complex
network condition. As previous experiments, we calculate
the lower bound of this scenario and it should be 2089
seconds (size(F)

min{Di} = 1638400
784). Our first experiment is to study

the impact of the number of peers from 500 to 5000. We
now explore the scalability of Bee in the complex network
environment.

Fig. 4 (a) shows the normalized MDT metric of Bee and
BitTorrent. This result also shows that Bee is almost twice
faster than the BitTorrent in MDT metric. We also show the
cumulative distribution of the number of complete peers in
a network with 2000 peers in Fig. 4 (b). Here, the dashed
vertical line in Fig.4(b) denotes the lower bound of the data
dissemination time. It is easy to see that 80% peers leave
system at the T time (Recall that the Eq. (5) that we defined in
section II.) and the remaining 20% peers prolong the MDT of
Bee system. In fact, these 80% peers are higher capacity peer,

and the dissemination time of remained peers is limited by
their download capacity. This result also shows that the slowest
peer first strategy of Bee dose not enforce higher capacity
peers leaving the system with all peers at the same time, every
peer can immediately depart when it received complete file.

In order to demonstrate this phenomenon, we extend the
download capacity of low-capacity peers (784 Kbps) to make
sure that each peer can download the complete file before
the lower bound. We increased the download capacity of the
poor capacity peers from 784 Kbps to 1200 Kbps. Fig. 4 (c)
shows the CDFs of the download time for the two protocols
in the case of a network with 2000 peers. The top one is the
CDF with 784 Kbps (the minimum download capacity of some
peers) and the bottom is the CDF with 1200 Kbps. From the
results in Fig. 4 (c), we can observe that the maximum dissem-
ination time of Bee also approaches the lower bound, when the
lower bound is dominated the factor max{ T (F), size(F)/Us,
size(F)/min(Di)} instead of the factor size(F)/min(Di). The
result implies that the performance of Bee is independent of
the degree of network heterogeneity, and the dissemination
time of Bee can approach the lower bound when there are no
bottleneck links at the downstream peers. In sum, all peers in
Bee are able to finish downloading very quickly even in the
complex network scenario.

E. The Effect of Join Pattern

In this section, we study the impact of different user arrival
patterns on the performance of Bee and BitTorrent systems. In
following experiments, we vary the peer join rate to evaluate
the performance variation of Bee and BitTorrent systems. All
experiments in this section use the two following sets of
settings: 1) a poisson arrival process with a total of 1000 peers.
2) an arrival pattern is derived from a tracker log of a Redhat
9 distribution torrent. The capacity of each peer is randomly
selected among four capacity types as shown in Table I.

Fig. 5 shows the performance when using different user
arrival rates for Bee and BitTorrent system. As Fig. 5 (a)
shows, we can easily observe that when the arrival rate is
low, the MDTs of Bee and BitTorrent both increase. We may
observe that MDTs of Bee and BitTorrent at the arrival rate
of 0.1 peers/sec are both higher than those at much higher
arrival rates. The reason is that, when the arrival rate is low,
the service capacity of overall system is also low. So the peers
in our Bee or BitTorrent need more time to finish downloading
the file. However, our Bee can outperform BitTorrent in the
metrics in such scenario.

We now evaluate Bee and BitTorrent in a realistic join pat-
tern. In this experiment, each peer joins the system according
to the tacker log of a Redhat 9 distribution torrent, the log
was collected over 12,000 peers joining time. Note that peer
capacity consists of four types as shown in Table I, so the
lower bound in this case is that size(F)

min{Di} = 2089 seconds.
We show the download completion time of each peer for

Bee and BitTorrent in Fig. 5 (b). 83% peers in Bee finish
the their download before 2000 seconds. On the contrary,
only 50% peers can leave BitTorrent system at 2000 seconds.

6

(a) MDT (b) (c)

Fig. 4. Scalability comparison in the more heterogeneous environment.

(a) MDT (b) Distribution of dissemination time

Fig. 5. Performance comparison of Bee to BitTorrent with increasing arrival
rate in more heterogeneous environment.

Moreover, Bee only needs 1/3 download time of BitTorrent
to finish the file dissemination. The result shows that Bee
can significantly reduce the overall download time of the
file dissemination system, and this is a significant result as
the dissemination time is a principal metric for time-critical
applications.

We especially concern how much delay occurred in the dis-
semination time for those peers with higher upload bandwidth.
In Fig. 5 (b), all the peers with higher upload bandwidth are
the first 2,000 nodes; it is easy to see that the downloading
times of the high-bandwidth peers only have a slight increase,
which means the high-bandwidth peers only have a little delay
in the Bee system. The result shows that our Bee protocol does
not enforce the high-bandwidth peers to stay in the system.

VI. CONCLUSION

In this paper, we present our experimental study of the
time-critical data dissemination problem. We present the Bee
protocol for disseminating the time-critical data in the Inter-
net. Bee protocol includes a slowest peer first strategy and
a topology adaptation algorithm to maximize the speed of
dissemination. Under the slowest peer first strategy, a peer
always transmits blocks to the neighbors that have fewest
number of downloaded blocks. Bee protocol also embeds a
topology adaptation algorithm for a peer to adapt number

of connections to its neighbors based on its own upload
bandwidth. Moreover, our experimental results show that the
dissemination time of the Bee protocol approaches lower
bound of the data dissemination problem for both homogenous
and heterogeneous network environments. Specifically, in the
simulations on heterogeneous network environment presented
in this paper. As for the arrival traffic derived from a software
release log, Bee can significantly reduce the overall download
time of the file dissemination system than the BitTorrent
system.

REFERENCES

[1] B. Cohen, “Incentives build robustness in bittorrent,” Proc. of ACM
P2PECON, 2003.

[2] R. Sherwood, R. Braud, and B. Bhattacharjee, “Slurpie: A cooperative
bulk data transfer protocol,” Proc. of IEEE INFOCOM, 2004.

[3] D. Kosti, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
bandwidth data dissemination using an overlay mesh,” Proc. of ACM
SOSP, 2003.

[4] M. Deshpande, B. Xing, I. Lazardis, B. Hore, N. Venkatasubramanian,
and S. Mehrotra, “Crew: A gossip-based flash-dissemination system,”
Proc. of IEEE ICDCS, 2006.

[5] T. Karagiannis, A. Broido, M. Faloutsos, and K. claffy, “Transport layer
identification of p2p traffic,” Proc. of ACM IMC, 2004.

[6] R. Kumar and K. Ross, “Peer assisted file distribution: The minimum
distribution time,” Proc. of IEEE Workshop on Hot Topics in Web
Systems and Technologies, 2006.

[7] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “Splitstream: High-bandwidth multicast in a cooperative
environment,” Proc. of ACM SOSP, 2003.

[8] X. Zheng, C. Cho, and Y. Xia, “Optimal peer-to-peer technique for
massive content distribution,” Proc. of IEEE INFOCOM, 2008.

[9] C.-J. Wu, C.-Y. Li, and J.-M. Ho, “Improving the download time of
bittorrent-like systems,” Proc. of IEEE ICC, 2007.

[10] A. Papadimitriou and A. Delis, “Flash data dissemination in unstructured
peer-to-peer networks,” Proc. of the IEEE ICPP, 2008.

[11] “Akamai technologies, inc.” http://www.akamai.com/.
[12] K. Park and V. S. Pai, “Scale and performance in the coblitz large-file

distribution service,” Proc. of USENIX NSDI, 2006.
[13] A. Bharambe, C. Herley, and V. Padmanabhan, “Analyzing and improv-

ing bittorrent performance,” Proc. of IEEE INFOCOM, 2006.
[14] A. Akella, S. Seshan, and A. Shaikh, “An empirical evaluation of wide-

area internet bottlenecks,” Proc. of ACM IMC, 2003.
[15] S. Saroiu, P. K. Gummadi, and S. D, “A measurement study of peer-to-

peer file sharing systems,” Proc. of ACM MMCN, 2002.
[16] C.-J. Wu, C.-Y. Li, K.-H. Yang, and J.-M. Ho, “Bee: A best effort peer-

to-peer delivery protocol for internet data dissemination applications,”
Technical Report (TR-IIS-06-015), IIS, Academia Sinica, 2006.

