
Chi-Jen Wu, Kai-Hsiang Yang and Jan-Ming Ho
Institute of Information Science, Academia Sinica, Taiwan

{cjwu,khyang,hoho}@iis.sinica.edu.tw

Abstract
The most prevalent peer-to-peer (P2P) application till today is
file sharing, and unstructured P2P networks can support
inherent heterogeneity of peers, are highly resilient to peers’
failures, and incur low overhead at peer arrivals and
departures. Dynamic querying (DQ) is a new flooding
technique which could estimate a proper time-to-live (TTL)
value for a query flooding by estimating the popularity of the
searched files, and retrieve sufficient results under controlled
flooding range for reducing network traffic. Recent researches
show that a large amount of peers in the P2P file sharing
system are the free-riders, and queries are seldom hit by those
peers. The free-riders problem causes a large amount of
redundant messages in the DQ-like search algorithm. In this
paper, we proposed a new search algorithm, called
“AntSearch”, to solve the problem. In AntSearch, each peer
maintains its hit rate of previous queries, and records a list of
pheromone values of its immediate neighbors. Based on the
pheromone values, a query is only flooded to those peers
which are not likely to be the free-riders. Our simulation
results show that, compared with DQ and its enhanced
algorithm DQ+, the AntSearch algorithm averagely reduces
50% network traffic at almost the same search latency as
DQ+, while retrieving sufficient results for a query with a
given required number of results.

1. Introduction
Peer-to-peer (P2P) networks such as Gnutella, KaZaA, and
BitTorrent have emerged as a new Internet computing
paradigm over the past few years. The most prevalent P2P
application till today is file sharing. In contrast to structured
P2P networks, search in unstructured P2P networks is
considerably more challenging because of the lack of global
routing and directory service. In spite of this apparent limit,
unstructured P2P networks have several desirable properties:
(1) they support inherent heterogeneity of peers; (2) they are
highly resilient to peers’ failures, and (3) they incur low
overhead at peer arrivals and departures. Most importantly,
they are simple to implement and result in virtually no
overhead in topology maintenance. Consequently, many real-
world large-scale P2P networks are unstructured.

In a Gnutella P2P network, a blind flooding algorithm is
used to search results for a query under a time-to-live (TTL)
constraint. The biggest problem of the blind flooding
algorithm is that a single query may cause a large amount of
network traffic, and the second problem is that, the number of
search results can not be guaranteed. A good search algorithm
should be able to retrieve sufficient (small or no overshooting)
results for a query with a given required number of results at
low network traffic cost. For this purpose, a new controlled

flooding technique, dynamic querying (DQ) [1], is proposed
for these requirements. It works as follows. (1) Probe phase: a
requester peer (a peer that generates a query) first floods a
query towards a few neighbors with a small TTL value for
estimating the popularity of the searched items. Then (2) an
iterative process takes place. During each of iterations, the
requester peer computes the number of peers to be contacted
for obtaining the desired number of results; then it chooses a
neighbor peer, calculates a TTL for a query flooding to that
neighbor, and propagates a query with that TTL to the
neighbor peer. This iterative process stops when the desired
number of results is returned, or all neighbor peers have been
visited. Intuitively, this flooding algorithm is dynamic because
the requester peer estimates the item’s popularity to adjust a
TTL value for each flooding, so that sufficient results can be
retrieved at lower network traffic overhead than a blind
flooding algorithm.

Jiang et al. [4] evaluated and analyzed the DQ technique and
proposed an enhanced DQ technique, DQ+, which can further
reduce network traffic cost and shorten search latency. To
avoid network traffic cost, the DQ+ technique uses a
confidence interval method to provide a safety margin on the
estimate of the popularity of the searched item. To achieve the
lower search latency, the DQ+ technique uses the greedy
strategy in each of iterations where the requester peer expects
to find sufficient results from a chosen neighbor. Compared
with the DQ technique, a query packet is only flooded to a
small amount of peers, and thus the DQ+ technique is
excellent in the performance of search latency. Basically these
two algorithms are still based on a flooding technique.

Unfortunately, there is a serious problem, called the free-
riding problem, for a flooding technique. Current research
papers [2, 3] show that a large amount of peers in a P2P file
sharing system are free-riders, which is defined as the peers
sharing less than 100 files (about 96% in [2], and 75% in [3]),
and queries are seldom hit at these peers. Thus, a query
flooding causes a large amount of network traffic for sending
queries to those free-riders. For example, the part (a) of Figure
1 depicts an unstructured P2P network which is formed by
eight peers, and each peer has three immediate neighbors.
Suppose the peer A is the requester peer, and the search items
are located in peers B, E, and H. It is easily to observe that
each peer excluding peer A receives three query packets from
its immediate neighbors. When multiple query packets are sent
to a peer, all but the first messages are considered as
redundant and useless messages. In the part (b) of Figure 1,
the total 21 packets in this flooding sample consist of 10 solid
lines and 11 dotted lines, where a dotted line represents a
redundant packet. Hence, a flooding will cause too much

AntSearch: An Ant Search Algorithm in Unstructured Peer-to-Peer Networks

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

redundant network traffic.
In this paper, we focus on the free-rider problem in the DQ-

like search algorithm, and propose a new search algorithm,
called “AntSearch”, to reduce the redundant messages during
a query flooding. In AntSearch, each peer maintains a
pheromone value to present its hit rate of previous received
queries, and records a list of pheromone values of its
immediate neighbors. Based on these pheromone values, the
AntSearch can flood a query only to those peers which are not
likely to be free-riders. The main idea of the AntSearch is
using pheromone values to identify the free-riders, prevent
sending messages to those peer in order to reduce the
redundant messages.

We have conducted several experiments to evaluate the
network traffic cost and search latency in AntSearch.
Compared with DQ and DQ+ search algorithm, our simulation
results show that the AntSearch algorithm averagely reduces
50% network traffic at almost the same search latency as DQ+,
while retrieving sufficient results for a query with a given
required number of results.

The remainder of this paper is organized as follows. Section
2 briefly reviews current related works in unstructured P2P
networks. Section 3 introduces the system architecture of
AntSearch, and its index structures and search algorithm. The
experimental methodology and results are presented in Section
4. Finally, we summarize our results and represent our
conclusions in Section 5.

2. Related Work
In this section, we review previous search algorithms in

unstructured P2P networks and describe the free-riding
problem in a P2P system. As mentioned above, a flooding
search algorithm is blind and expensive, since the network
does not provide any clues to facilitate a search. Hence, it is
very crucial to reduce network traffic, shorten search latency,
and retrieve sufficient results for a query. The Gnutella
developer community proposed the DQ technique to guarantee
that sufficient results can be retrieved, and a research result in
[5] indicated that DQ could predict a proper TTL value for a
query flooding in order to reduce network traffic load. Jiang et.
al. [4] evaluated and analyzed the DQ technique and proposed
an enhanced DQ technique, DQ+. However, the design of DQ

and DQ+ techniques are still based on a flooding search
algorithm without considering the free-riding problem in the
P2P network.

Besides the DQ-like technique, several research [6, 7, 8] has
also been proposed to reduce network traffic load during a
query flooding. Yang et al. [7] proposed a technique in which
each peer only forwards a query to a subset of its neighbors
according to statistics of previous query contents. This
solution reduces network traffic; however the number of
retrieved results may not be able to satisfy the query. Another
limitation of this solution is that, each peer has to spend large
space to store the statistics about the query contents for each
neighbor, and periodically maintain the statistics. Another type
of search algorithm is a well-known random walk technique,
which forwards a query to a neighbor at each step until a file is
found. Yatin et al. [6] proposed an algorithm called GIA,
based on the random walk technique. Each peer maintains an
index of files stored in its neighbors and floods a query to
those high capacity peers. In general, random walk based
algorithm can reduce network traffic and enhance the system
scalability; however, it usually results in longer search latency,
and the number of retrieved results varies to a great extent for
different underlying network topologies [9].
As mentioned above, several research papers [12, 13] study
the user behavior in P2P systems, and discover the free-riding
problem is very serious in a flooding-based algorithm.
Feldman et al. [12] present an economic model of user
behavior in P2P systems, explore the effect of free-riders, and
propose several research problems for the free-riding
phenomenon. Ramaswamy et al. [13] introduce a concept of
utility function to measure the usefulness every user to the
system, and proposed a free-rider control scheme. They focus
on modeling the free-riding phenomenon and studing the user
behavior in P2P systems. However, our Antsearch algorithm is
a feasible solution for solving the free-riding problem.

3. Design of AntSearch
In this section we first give an overview of AntSearch

algorithm, and then present the data structures in each peer
and the search algorithm in the AntSearch.

3.1. Overview
The AntSearch algorithm is designed for solving the free-

A

C

GF

B D

E H

Requester Peer

doc

doc doc

A

C

GF

B D

E H

Requester Peer

docdoc

docdoc docdoc

A

B C D

E F

F H C E

F G

B E D H

G H

C H E G

Requester PeerA

B C D

E F

F H C E

F G

B E D H

G H

C H E G

Requester Peer

(a) (b)
Figure 1. The excessive traffic overhead in a flooding search algorithm. Part (a) depicts an unstructured P2P network topology,
and peers B, E, and H contain the target documents. Part (b) is the flooding path when peer A floods a query with TTL = 2. A
solid line represents a hit message, and a dotted line represents a redundant message.

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

rider problem while searching in unstructured P2P networks.
Like the DQ search algorithm [1], AntSearch algorithm
comprises two search phases: (1) a probe phase and (2) a
flooding phase.
(1) Probe phase: when a requester peer starts to process a
query, it first has to flood probe queries to a few neighbors
with a small TTL (in general, flooding to three neighbors with
TTL=2) for estimating the popularity of searched files. When
the small-area flooding ends, the requester peer obtains the
statistics information about the searched files. By this statistics
information, the requester peer can predict how many results
could be retrieved when each step only floods the query to k%
(k=10, 20…, 100) of immediate neighbors. All these
information will be stored into a data structure which is called
the “probe table”.
(2) Flooding phase: When the probe table is obtained, the
requester peer has to assign two variables before flooding this
query, the first one is the k value, and the other is the TTL
value. The k value represents that how much percentage of
neighbors should be chosen to flood this query, and the TTL
value is a bound of flooding hops. By the probe table, the
requester peer estimates the search cost (including search
latency and flooding messages) at every k value for choosing a
suitable k value. When the k value is assigned, an iterative
search process takes place. During each of iterations, (1) the
requester peer calculates how many peers should be further
contacted, and chooses a suitable TTL for a neighbor. (2) The
requester peer then propagates the query packet towards a
neighbor, and all the following peers only forwards the query
to the k% of neighbors with higher pheromone values. This
iterative process stops when the desired number of results is
returned, or all neighbors have been visited.
The main difference between AntSearch and the dynamic
querying search algorithm [1], DQ+ [4], is that AntSearch
algorithm improves the search efficiency of a flooding by
reducing the number of messages sent by a peer and the
number of peers that are queried. For this goal, each peer
maintains its pheromone value and stores a list of pheromone
values of its neighbors. By this data structure, a peer only
propagates a query to the top k% of its neighbors with higher
pheromone values. The pheromone table is used to help a peer
identify the neighbors which may contain the searched file.
Figure 2 illustrates search efficiency in AntSearch. Compared
with the part (b) in Figure 1, each peer only floods the query
to several neighbors with higher pheromone values. Intuitively,
the pheromone table is a data structure to hint the direction
where a searched file is located.

3.2. Pheromone Table
The objective of storing a pheromone table in each pear is to

record the hit rate of previous queries in each immediate
neighbor for directing a query to a neighbor with higher
pheromone value. A neighbor’s pheromone value represents
the probability of that the neighbor is chosen to be searched.
Each peer in the system maintains two values, the first one is
the number of hit queries, Nh, and the other is the number of

total processed queries, Nq. These two values are permanently
stored in a peer when it joins the system in the first time. For a
peer q, suppose the dq is the degree of peer q (which means
peer q has dq number of neighbors), the pheromone value of
peer q, (pvq), can be computed as follows:

)1(1 αα −+×= =

q

d

i
i

q

h
q

d

q

pv

N
Npv (1)

where the first part Nh/Nq is the hit rate of previous queries in
peer q, and the second part of the formula is the average
pheromone values of neighbors of peer q, which represents
that a peer q shares few files, but its neighbors share a large
amount of popular files. The value (between 0 and 1) is used
to adjust the weights between the hit rate of peer q and the
average pheromone value of the neighbors of peer q. If the
peer q is a free-rider, the ratio of Nh/Nq will be very small. If
the peer q is a peer sharing a lot of popular files, the ratio of
Nh/Nq will increase rapidly. Note that the Nh value is only
increased by one when a query is hit. These two values are
continually updated both in probe phase and flooding phase.
The pheromone table stored in peers is updated in two
situations. (1) When a peer joins into the unstructured P2P
system, it collects the pheromone values of its immediate
neighbors. The pheromone value is sent within a PING and
PONG messages in the Gnutella protocol. (2) When a peer
receives a query, it then updates each record of the pheromone
table. When a neighbor disconnects form the network, a peer
immediately removes the pheromone value of the neighbor
from the pheromone table. No other action is required in the
AntSearch protocol, and it is easily to observe that the
maintenance cost for a pheromone table is very limited.

Table 1: The Probe Table

k nk hk

10% 1 15.84
20% 3 63.36
30% 5 142.56
40% 8 253.44
50% 12 396.00
60% 12 570.24
70% 13 776.16
80% 15 1013.76
90% 16 1283.04
100% 17 1584.00

A

B C D

E F

F H C E

F G

B E D H

G H

C H E G

Requester Peer0.3

0.30.10.8

0.8 0.5 0.2 0.8

A

B C D

E F

F H C E

F G

B E D H

G H

C H E G

Requester Peer0.3

0.30.10.8

0.8 0.5 0.2 0.8

Figure 2. An example of AntSearch, the number at the peer pi
side is presented the pheromone value of the peer pi.

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

3.3. AntSearch algorithm
The AntSearch algorithm is a controlled flooding technique

to search results for a query with a specified required number
of results, denoted by N. The process of it comprises two
phases: (1) the probe phase and (2) the flooding phase.

(1) Probe phase. When a requester peer produces a query
with a required number of results, N, it first floods a probe
query to a few neighbors with a small TTL (in general,
flooding to three neighbors with TTL=2). When the flooding
ends, the requester peer receives the statistics about the
searched files, and it can generate the probe table, to
summarize the popularity of the searched files and the results
when only flooding k% of neighbors in each step. Table 1
shows a probe table, which consists of three columns: the k
value, the number of searched results nk, and the estimated
number of searched peers, hk (also called the search horizon).

In this case when k is 10%, each peer only forwards the
query to 10% of its neighbors with higher pheromone value,
and the requester peer can receive 1 results while the flooding
averagely visits to 15.84 number of peers. In this paper, we
assume the degree d of a neighbor can be known, and the
average degree of network is D which can be estimated. For
each k, the search horizon, hk, is calculated by the following
formula, where TTL = 2 in our experiments:

2
3

1

12
3

1

3

1

1

0

)()(

)1()(

Dkd

Dkkd

Dkkdh

i
i

i
i

i

TTL

j

j
ik

=

−

=

=

−

=

=

=

−=

In order to gather the number of searched results, Nk, for
each k during a flooding to small area, we designed a probe
flooding mechanism (PFM) to obtain the probe table. In the
PFM, each query packet is sent with a mark to identify which
k it belongs to during the search steps. Figure 3 shows an
example of the PFM. Step 1 shows that a requester peer, A,
forwards a query to its neighbor, B, which belongs to the top
10% neighbors with higher pheromone values. In Step 2, the
peer B forwards the query to its neighbor, C, which belongs to
the top 30% neighbors with higher pheromone values, and
then the peer B has to rewrite the marked k in the query that is
forwarded to the peer C form 10% to 30%. In Step 3, when a
query is hit, the peer C returns the query with marked k = 30%
to requester peer A. Thus, the requester peer can calculate the
number of searched results for each k in a flooding, and then
generates a probe table.

(2) Flooding phase: Since a probe table is generated in the
probe phase, the first step in the flooding phase is to choose a
proper k and compute a TTL value for next neighbor. The
Figure 4 illustrates the pseudo code of AntSearch algorithm.
For each k, we can easily calculate how many peers the
flooding has to further search for retrieving a required number
of results, N. Suppose Hk denote the further search horizon for
a given k, and it should be equal to hk(N-nk) /nk. When Hk is
computed, we can estimate a proper TTL for a flooding with

a given k to reach the search horizon by the formula (2) in [4]
as follows.

1
)2(log)1(−

−
≈ − dk

DkHTTL k
Dkk

As the pseudo code shown in Figure 5, the requester peer
has to calculate the required TTL value for each k, and finds a
minimum k with a TTL less or equal to a TTL threshold,
MAX_TTL. The MAX_TTL is generally set to 4. The k is then
chosen and used in the following flooding iterations. After a
proper k is chosen, the requester peer starts an iterative process
to search the results (from line 7 to line 12 in Figure 4).
During each iteration, the requester peer randomly chooses a
neighbor, calculates a proper TTL to the neighbor, and then
sends the query message with the chosen k and the calculated
TTL to the neighbor (at line 10 in Figure 4, and the function
calculate_TTL is implemented by the formula 3 to calculate a
TTL value). The iteration continues until the required number
of results is obtained or all neighbors are visited.

There is a tradeoff between choosing a larger k value and
choosing a smaller k value. A flooding with a larger k value
results in more query messages. For example, when k = 100%,
it means that all the neighbors will be flooded in each step of
search. Hence, it will cause much network traffic. On the other
hand, choosing a smaller k causes a larger TTL value to be
calculated for a flooding, which means that the flooding will
take longer to retrieve the required number of results.

Recall that in the original DQ and DQ+ technique, a query
packet is propagated to all the peers that can be reached with
the TTL constraint. They do not consider the free-rider
problem in a real P2P file sharing system. AntSearch
algorithm uses the pheromone table to prevent flooding a
query to a free-rider, in order to reduce redundant network
traffic.

4. Performance Evaluation
In this section, we use three metrics to measure the

performances of the AntSearch, DQ and DQ+ search
algorithms. The simulation model is first described and then
our experimental results are presented. Our simulation is
processed by a simulation program which is based on that

A B

C

10%

20%

30%
40%

50%

10%

20%

30%
Query Hit

Step 1

Step 2

Step 3

A B

C

10%

20%

30%
40%

50%

10%

20%

30%
Query Hit

Step 1

Step 2

Step 3

Figure. 3. An example of probe phase in AntSearch. We give a
simplification of probe in the figure, the peer A, B, C should
use the flooding technique to forward query. In this scenario,
the peer B is the top 10% peer in the pheronome table of the
peer A, the peer C is the top 30% peer in the pheronome table
of the peer B. And the peer C has the queried item.

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

used in [4]. This simulator runs on a real Gnutella network
topology on February 2, 2005 [10], and simulates 160,000
peers in the network topology. The average number of
neighbors per peer is close to 24, and more detail information
is provided in the technical report [11]. In the probe phase of
AntSearch, a query is propagated to random three neighbors
with TTL=2. Besides, in our experiments the default
maximum TTL value is 4, and the timeout interval is set to the
2.4 times TTL seconds. All the experimental setting is the
same as paper [4].

During each simulation, 1,000 different objects are located
over 160,000 peers, and each object has 1,600 replicas in the
P2P network. The placement policy of replica follows the
80/20 distribution [2] to simulate a large number of free-riders
existing in the P2P file-sharing system. Average 20% peers
contain the 80% replicas, and the other 20% replicas are
randomly located in the rest 80% peers. All the queries are
uniformly distributed to the network (randomly choosing a
peer without the target file), and each search aims to retrieve
100 results (N=100). For the computation formula of
pheromone value, the parameter is set to 0.7 in our
experiments. According to our experiments, the parameter
does not significantly affect the performance of search
algorithm when it is set between 0.3 and 0.8.

The evaluation metrics used in our experiments include the
followings. (i) Number of searched files: for a query with a
required number of results N, a good search algorithm should
retrieve the number of results close to or over N. (ii) Number

of query messages: the number of query messages is defined
as the total amount of query messages generated during the
flooding process. (iii) Search latency: the search latency is
defined as the total time for the flooding process.

Figure 6 shows the numbers of searched files in Dynamic
Querying (DQ), the enhanced version of Dynamic Querying
(DQ+), and the AntSearch (DQ-Ants) at 100 simulation runs.
It is clearly to observe that, the number of searched files in DQ
is less than the required number of results, because the DQ
search algorithm is designed to use a very conservative
approach to flooding queries. On the other hand, DQ+ and
AntSearch algorithms always can retrieve the desired number
of results. The most difference between them is that, the
AntSearch sometimes retrieves a larger number of results than
that in DQ, and this overshooting problem is caused by the
misestimate of search horizon, which means the physical
number of searched peers is larger than the estimated number
of peers.

Figure 7 depicts the numbers of query messages generated
in the three algorithms at 100 simulation runs. First, we can
observer that the total query message in AntSearch is much

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Sequence number of run

N
um

be
r o

f p
ac

ke
ts

DQ-Ants
DQ
DQ+

Figure 7. The performance comparison of Dynamic Querying (DQ),
the enhanced version of Dynamic Querying (DQ+), and our
AntSearch (DQ-Ants) in the number of transmitted packets.

80

90

100

110

120

130

140

150

160

170

180

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Sequence number of run

N
um

be
r o

f r
es

ul
ts

DQ-Ants
DQ
DQ+

Figure 6. The performance comparison of Dynamic Querying
(DQ), the enhanced version of Dynamic Querying (DQ+), and our
AntSearch (DQ-Ants) in the number of returned results. 1) Choosing_K (Probe_Table, MAX_TTL)

2) Begin
3) For (k=0.1 to 1.0)

4) Hk =
k

kk

n
nNh)(−

5) TTL =
1

)2(log)1(−
−

− dk
DkH k

Dk

6) if TTL <= MAX_TTL then break
7) End for
8) return k
9) End begin

Figure 5. The pseudo code of Choosing k rate.

1) AntSearch (desired number of result N)
2) Begin
3) Probe_Table= Probe()
4) If returned_Results >= N then return Results
5) Else
6) K = Choosing_K(Probe_Table, MAX_TTL)
7) While returned_Results <= N
8) Neighbor = randomly choosing a unvisited neighbor
9) d = degree(Neighbor)
10) TTL = Calculating _TTL(K, d)
11) Forwarding query to the Neighbor with K and TTL
12) End while
13) End if
14) return returned_Results
15) End begin

Figure 4. AntSearch algorithm.

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

smaller than those in DQ and DQ+ algorithms. The total
number of query message in AntSearch is around 6,000, and
that in DQ and DQ+ is approximately 12,000. In other words,
AntSearch algorithm average reduces 50% of query messages
during a flooding. Recall that a query is propagated to all
neighbors in DQ and DQ+ algorithms, and a query is only
propagated to top k% of neighbors with higher pheromone
values.

Figure 8 depicts the search latency in the three search
algorithm at 100 simulation runs. The search latency is an
important factor for the P2P file sharing system. We can
observe that the search latency in DQ algorithm is the longest,
approximately 100 seconds in each simulation run. The DQ+
algorithm has the shortest search latency due to a greedy
strategy applied in its iterative process. During each of
iteration, the requester peer estimates to retrieve all the
required number of results from a selected neighbor. Besides,
the latency in AntSearch is higher but very close to that in
DQ+ algorithm, because a query is only propagated to top k%
of neighbors with higher pheromone values, and in some case
the search needs more iterations to gain enough searched
results.

The overall comparison of the three performance metrics
are listed in Figure 9. Average speaking, the number of query
messages generated by a result is about 105 in DQ+, 107 in
DQ, and 54 in AntSearch. It is clearly that the AntSearch did
reduce approximately 50% network traffic for a query
flooding, and the search latency in AntSearch is longer than
that in the DQ+ algorithm by 5 seconds. Our experiments
show that AntSearch can reduce a large amount of network
traffic at an acceptable cost of search latency.

5. Conclusions and Future works
This paper was motivated by the need of a search algorithm

for an unstructured P2P system that can provide better search
performance in terms of network traffic cost and user latency.
The main contribution of our work is that we propose a search
algorithm, called ”AntSearch”, which can greatly reduce
network traffic in a query flooding by only sending queries to
those peers which are not likely to be free-riders. By allowing
for a small space cost (the pheromone values in each peer),
our experimented results show that AntSearch substantially
reduces network traffic which is caused by sending queries to
the free-riders, and completes a query at almost the same
search latency as DQ+ search algorithm. Most importantly,
AntSearch is simple and easy to implement into a real system.

References
[1] A. Fisk, “Gnutella dynamic query protocol v0.1,” May 2003,

Http://www9.limewire.com/develop-r/dynamic_query.html.
[2] Eytan Adar and Bernardo A. Huberman. "Free riding on

gnutella," in Technical report, Xerox PARC, 10 Aug. 2000.
[3] Stefan Saroiu, P. Krishna Gummadi, Steven D. Gribble, “A

Measurement Study of Peer-to-Peer File Sharing Systems,” in
Proceedingns of the Multimedia Computing and Networking
(MMCN), January, 2002.

[4] Hongbo Jiang and Shuding Jin, ”Exploiting Dynamic Querying
like Flooding Techniques in Unstructured Peer-to-peer
Networks,” in Proceedingns of IEEE Internet Conference on
Network Protocol (ICNP), October, 2005.

[5] Daniel Stutzbach, Reza Rejaie, and Subhabrata Sen.
“Characterizing Unstructured Overlay Topologies in Modern
P2P File-Sharing Systems”, in Proceedingns of Internet
Measurement Conference (IMC), October, 2005.

[6] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Scott
Shenker, “Making Gnutella-like P2P Systems Scalable ,” In
Proceedings of ACM SIGCOMM 2003

[7] B. Yang and H. Garcia-Molina,”Improving search in Peer-to-
Peer networks,” In Proceedingns of the 22nd International
Conference on Distributed Computing Systems (ICDCS), 2002.

[8] V. Cholvi, P. A. Felber, and E. W. Biersack, “Efficient Search in
Unstructured Peer-to-Peer Networks,” in European Transactions
on Telecommunications, 15(6) , 2004.

[9] Qin Lv, Pei Cao, Edith Cohen, Kai Li and Scott Shenker,
“Search and Replication in Unstructured Peer-to-Peer
Networks,” in Proceedings of the 16th international conference
on Supercomputing (ICS) 2002.

[10] D. Shakkottai and R. Rejaie, “Characterizing the two-tier
Gnutella topology,” in Proceedings of the ACM SIGMETRICS
(Poster), June 2005.

[11] D. Shakkottai and R. Rejaie, “Characterizing today’s Gnutella
topology,” Technique Report CIS-TR-04-02, CIS, University of
Oregon, November 2004.

[12] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica, “Free-
Riding and Whitewashing in Peer-to-Peer Systems,” in
Proceedings of the ACM SIGCOMM'04 Workshop on Practice
and Theory of Incentives in Networked Systems (PINS), August
2004.

[13] Lakshmish Ramaswamy and Ling Liu, "Free Riding: A New
Challenge to Peer-to-Peer File Sharing Systems". Peer-to-Peer
Computing Track, Hawaii International Conference on System
Sciences (HICSS-2003), January 2003.

104 107

83

106 105

20

110

54

25

0

20

40

60

80

100

120

Average number of
results

Average per result
cost

Average latencies

N
um

be
r o

f r
es

ul
ts,

 p
ac

ke
ts,

 la
te

nc
ie

s DQ-Ants
DQ
DQ+

Figure 9. The comparison of Dynamic Querying (DQ), the enhanced version
of Dynamic Querying (DQ+), and our AntSearch (DQ-Ants).

0

20

40

60

80

100

120

140

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Seqence number of run

La
te

nc
ie

s

DQ-Ants
DQ
DQ+

Figure 8. The performance comparison of Dynamic Querying (DQ), the
enhanced version of Dynamic Querying (DQ+), and our AntSearch (DQ-
Ants) in the number of latency.

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

