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Abstract 
The most prevalent peer-to-peer (P2P) application till today is 
file sharing, and unstructured P2P networks can support 
inherent heterogeneity of peers, are highly resilient to peers’ 
failures, and incur low overhead at peer arrivals and 
departures. Dynamic querying (DQ) is a new flooding 
technique which could estimate a proper time-to-live (TTL) 
value for a query flooding by estimating the popularity of the 
searched files, and retrieve sufficient results under controlled 
flooding range for reducing network traffic. Recent researches 
show that a large amount of peers in the P2P file sharing 
system are the free-riders, and queries are seldom hit by those 
peers. The free-riders problem causes a large amount of 
redundant messages in the DQ-like search algorithm. In this 
paper, we proposed a new search algorithm, called 
“AntSearch”, to solve the problem. In AntSearch, each peer 
maintains its hit rate of previous queries, and records a list of 
pheromone values of its immediate neighbors. Based on the 
pheromone values, a query is only flooded to those peers 
which are not likely to be the free-riders. Our simulation 
results show that, compared with DQ and its enhanced 
algorithm DQ+, the AntSearch algorithm averagely reduces 
50% network traffic at almost the same search latency as 
DQ+, while retrieving sufficient results for a query with a 
given required number of results.

1. Introduction 
Peer-to-peer (P2P) networks such as Gnutella, KaZaA, and 
BitTorrent have emerged as a new Internet computing 
paradigm over the past few years. The most prevalent P2P 
application till today is file sharing. In contrast to structured 
P2P networks, search in unstructured P2P networks is 
considerably more challenging because of the lack of global 
routing and directory service. In spite of this apparent limit, 
unstructured P2P networks have several desirable properties: 
(1) they support inherent heterogeneity of peers; (2) they are 
highly resilient to peers’ failures, and (3) they incur low 
overhead at peer arrivals and departures. Most importantly, 
they are simple to implement and result in virtually no 
overhead in topology maintenance. Consequently, many real-
world large-scale P2P networks are unstructured. 

In a Gnutella P2P network, a blind flooding algorithm is 
used to search results for a query under a time-to-live (TTL) 
constraint. The biggest problem of the blind flooding 
algorithm is that a single query may cause a large amount of 
network traffic, and the second problem is that, the number of 
search results can not be guaranteed. A good search algorithm 
should be able to retrieve sufficient (small or no overshooting) 
results for a query with a given required number of results at 
low network traffic cost. For this purpose, a new controlled 

flooding technique, dynamic querying (DQ) [1], is proposed 
for these requirements. It works as follows. (1) Probe phase: a 
requester peer (a peer that generates a query) first floods a 
query towards a few neighbors with a small TTL value for 
estimating the popularity of the searched items. Then (2) an 
iterative process takes place. During each of iterations, the 
requester peer computes the number of peers to be contacted 
for obtaining the desired number of results; then it chooses a 
neighbor peer, calculates a TTL for a query flooding to that 
neighbor, and propagates a query with that TTL to the 
neighbor peer. This iterative process stops when the desired 
number of results is returned, or all neighbor peers have been 
visited. Intuitively, this flooding algorithm is dynamic because 
the requester peer estimates the item’s popularity to adjust a 
TTL value for each flooding, so that sufficient results can be 
retrieved at lower network traffic overhead than a blind 
flooding algorithm.  

Jiang et al. [4] evaluated and analyzed the DQ technique and 
proposed an enhanced DQ technique, DQ+, which can further 
reduce network traffic cost and shorten search latency. To 
avoid network traffic cost, the DQ+ technique uses a 
confidence interval method to provide a safety margin on the 
estimate of the popularity of the searched item. To achieve the 
lower search latency, the DQ+ technique uses the greedy 
strategy in each of iterations where the requester peer expects 
to find sufficient results from a chosen neighbor. Compared 
with the DQ technique, a query packet is only flooded to a 
small amount of peers, and thus the DQ+ technique is 
excellent in the performance of search latency. Basically these 
two algorithms are still based on a flooding technique.     

Unfortunately, there is a serious problem, called the free-
riding problem, for a flooding technique. Current research 
papers [2, 3] show that a large amount of peers in a P2P file 
sharing system are free-riders, which is defined as the peers 
sharing less than 100 files (about 96% in [2], and 75% in [3]), 
and queries are seldom hit at these peers. Thus, a query 
flooding causes a large amount of network traffic for sending 
queries to those free-riders. For example, the part (a) of Figure 
1 depicts an unstructured P2P network which is formed by 
eight peers, and each peer has three immediate neighbors. 
Suppose the peer A is the requester peer, and the search items 
are located in peers B, E, and H. It is easily to observe that 
each peer excluding peer A receives three query packets from 
its immediate neighbors. When multiple query packets are sent 
to a peer, all but the first messages are considered as 
redundant and useless messages. In the part (b) of Figure 1, 
the total 21 packets in this flooding sample consist of 10 solid 
lines and 11 dotted lines, where a dotted line represents a 
redundant packet. Hence, a flooding will cause too much 
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redundant network traffic. 
In this paper, we focus on the free-rider problem in the DQ-

like search algorithm, and propose a new search algorithm, 
called “AntSearch”, to reduce the redundant messages during 
a query flooding. In AntSearch, each peer maintains a 
pheromone value to present its hit rate of previous received 
queries, and records a list of pheromone values of its 
immediate neighbors. Based on these pheromone values, the 
AntSearch can flood a query only to those peers which are not 
likely to be free-riders. The main idea of the AntSearch is 
using pheromone values to identify the free-riders, prevent 
sending messages to those peer in order to reduce the 
redundant messages.  

We have conducted several experiments to evaluate the 
network traffic cost and search latency in AntSearch. 
Compared with DQ and DQ+ search algorithm, our simulation 
results show that the AntSearch algorithm averagely reduces 
50% network traffic at almost the same search latency as DQ+, 
while retrieving sufficient results for a query with a given 
required number of results. 

The remainder of this paper is organized as follows. Section 
2 briefly reviews current related works in unstructured P2P 
networks. Section 3 introduces the system architecture of 
AntSearch, and its index structures and search algorithm. The 
experimental methodology and results are presented in Section 
4. Finally, we summarize our results and represent our 
conclusions in Section 5.  

2. Related Work 
In this section, we review previous search algorithms in 

unstructured P2P networks and describe the free-riding 
problem in a P2P system. As mentioned above, a flooding 
search algorithm is blind and expensive, since the network 
does not provide any clues to facilitate a search. Hence, it is 
very crucial to reduce network traffic, shorten search latency, 
and retrieve sufficient results for a query. The Gnutella 
developer community proposed the DQ technique to guarantee 
that sufficient results can be retrieved, and a research result in 
[5] indicated that DQ could predict a proper TTL value for a 
query flooding in order to reduce network traffic load. Jiang et. 
al. [4] evaluated and analyzed the DQ technique and proposed 
an enhanced DQ technique, DQ+. However, the design of DQ 

and DQ+ techniques are still based on a flooding search 
algorithm without considering the free-riding problem in the 
P2P network.  

Besides the DQ-like technique, several research [6, 7, 8] has 
also been proposed to reduce network traffic load during a 
query flooding. Yang et al. [7] proposed a technique in which 
each peer only forwards a query to a subset of its neighbors 
according to statistics of previous query contents. This 
solution reduces network traffic; however the number of 
retrieved results may not be able to satisfy the query. Another 
limitation of this solution is that, each peer has to spend large 
space to store the statistics about the query contents for each 
neighbor, and periodically maintain the statistics. Another type 
of search algorithm is a well-known random walk technique, 
which forwards a query to a neighbor at each step until a file is 
found. Yatin et al. [6] proposed an algorithm called GIA, 
based on the random walk technique. Each peer maintains an 
index of files stored in its neighbors and floods a query to 
those high capacity peers. In general, random walk based 
algorithm can reduce network traffic and enhance the system 
scalability; however, it usually results in longer search latency, 
and the number of retrieved results varies to a great extent for 
different underlying network topologies [9]. 
As mentioned above, several research papers [12, 13] study 
the user behavior in P2P systems, and discover the free-riding 
problem is very serious in a flooding-based algorithm. 
Feldman et al. [12] present an economic model of user 
behavior in P2P systems, explore the effect of free-riders, and 
propose several research problems for the free-riding 
phenomenon. Ramaswamy et al. [13] introduce a concept of 
utility function to measure the usefulness every user to the 
system, and proposed a free-rider control scheme. They focus 
on modeling the free-riding phenomenon and studing the user 
behavior in P2P systems. However, our Antsearch algorithm is 
a feasible solution for solving the free-riding problem. 

3. Design of AntSearch 
In this section we first give an overview of AntSearch 

algorithm, and then present the data structures in each peer 
and the search algorithm in the AntSearch. 

3.1. Overview
The AntSearch algorithm is designed for solving the free-
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Figure 1. The excessive traffic overhead in a flooding search algorithm. Part (a) depicts an unstructured P2P network topology, 
and peers B, E, and H contain the target documents. Part (b) is the flooding path when peer A floods a query with TTL = 2. A 
solid line represents a hit message, and a dotted line represents a redundant message. 
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rider problem while searching in unstructured P2P networks. 
Like the DQ search algorithm [1], AntSearch algorithm 
comprises two search phases: (1) a probe phase and (2) a 
flooding phase. 
(1) Probe phase: when a requester peer starts to process a 
query, it first has to flood probe queries to a few neighbors 
with a small TTL (in general, flooding to three neighbors with 
TTL=2) for estimating the popularity of searched files. When 
the small-area flooding ends, the requester peer obtains the 
statistics information about the searched files. By this statistics 
information, the requester peer can predict how many results 
could be retrieved when each step only floods the query to k% 
(k=10, 20…, 100) of immediate neighbors. All these 
information will be stored into a data structure which is called 
the “probe table”. 
(2) Flooding phase: When the probe table is obtained, the 
requester peer has to assign two variables before flooding this 
query, the first one is the k value, and the other is the TTL 
value. The k value represents that how much percentage of 
neighbors should be chosen to flood this query, and the TTL 
value is a bound of flooding hops. By the probe table, the 
requester peer estimates the search cost (including search 
latency and flooding messages) at every k value for choosing a 
suitable k value. When the k value is assigned, an iterative 
search process takes place. During each of iterations, (1) the 
requester peer calculates how many peers should be further 
contacted, and chooses a suitable TTL for a neighbor. (2) The 
requester peer then propagates the query packet towards a 
neighbor, and all the following peers only forwards the query 
to the k% of neighbors with higher pheromone values. This 
iterative process stops when the desired number of results is 
returned, or all neighbors have been visited. 
The main difference between AntSearch and the dynamic 
querying search algorithm [1], DQ+ [4], is that AntSearch 
algorithm improves the search efficiency of a flooding by 
reducing the number of messages sent by a peer and the 
number of peers that are queried. For this goal, each peer 
maintains its pheromone value and stores a list of pheromone 
values of its neighbors. By this data structure, a peer only 
propagates a query to the top k% of its neighbors with higher 
pheromone values. The pheromone table is used to help a peer 
identify the neighbors which may contain the searched file. 
Figure 2 illustrates search efficiency in AntSearch. Compared 
with the part (b) in Figure 1, each peer only floods the query 
to several neighbors with higher pheromone values. Intuitively, 
the pheromone table is a data structure to hint the direction 
where a searched file is located.  

3.2. Pheromone Table
The objective of storing a pheromone table in each pear is to 

record the hit rate of previous queries in each immediate 
neighbor for directing a query to a neighbor with higher 
pheromone value. A neighbor’s pheromone value represents 
the probability of that the neighbor is chosen to be searched. 
Each peer in the system maintains two values, the first one is 
the number of hit queries, Nh, and the other is the number of 

total processed queries, Nq. These two values are permanently 
stored in a peer when it joins the system in the first time. For a 
peer q, suppose the dq is the degree of peer q (which means 
peer q has dq number of neighbors), the pheromone value of 
peer q, (pvq), can be computed as follows: 
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where the first part Nh/Nq is the hit rate of previous queries in 
peer q, and the second part of the formula is the average 
pheromone values of neighbors of peer q, which represents 
that a peer q shares few files, but its neighbors share a large 
amount of popular files. The value  (between 0 and 1) is used 
to adjust the weights between the hit rate of peer q and the 
average pheromone value of the neighbors of peer q. If the 
peer q is a free-rider, the ratio of Nh/Nq will be very small. If 
the peer q is a peer sharing a lot of popular files, the ratio of 
Nh/Nq will increase rapidly. Note that the Nh value is only 
increased by one when a query is hit. These two values are 
continually updated both in probe phase and flooding phase.  
The pheromone table stored in peers is updated in two 
situations. (1) When a peer joins into the unstructured P2P 
system, it collects the pheromone values of its immediate 
neighbors. The pheromone value is sent within a PING and 
PONG messages in the Gnutella protocol. (2) When a peer 
receives a query, it then updates each record of the pheromone 
table. When a neighbor disconnects form the network, a peer 
immediately removes the pheromone value of the neighbor 
from the pheromone table. No other action is required in the 
AntSearch protocol, and it is easily to observe that the 
maintenance cost for a pheromone table is very limited. 

Table 1: The Probe Table 

k nk hk

10% 1 15.84 
20% 3 63.36 
30% 5 142.56 
40% 8 253.44 
50% 12 396.00 
60% 12 570.24 
70% 13 776.16 
80% 15 1013.76 
90% 16 1283.04 
100% 17 1584.00 

A

B C D

E F

F H C E

F G

B E D H

G H

C H E G

Requester Peer0.3

0.30.10.8

0.8 0.5 0.2 0.8

A

B C D

E F

F H C E

F G

B E D H

G H

C H E G

Requester Peer0.3

0.30.10.8

0.8 0.5 0.2 0.8

Figure 2. An example of AntSearch, the number at the peer pi
side is presented the pheromone value of the peer pi.
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3.3. AntSearch algorithm
The AntSearch algorithm is a controlled flooding technique 

to search results for a query with a specified required number 
of results, denoted by N. The process of it comprises two 
phases: (1) the probe phase and (2) the flooding phase. 

(1) Probe phase. When a requester peer produces a query 
with a required number of results, N, it first floods a probe 
query to a few neighbors with a small TTL (in general, 
flooding to three neighbors with TTL=2). When the flooding 
ends, the requester peer receives the statistics about the 
searched files, and it can generate the probe table, to 
summarize the popularity of the searched files and the results 
when only flooding k% of neighbors in each step. Table 1 
shows a probe table, which consists of three columns: the k
value, the number of searched results nk, and the estimated 
number of searched peers, hk (also called the search horizon).  

In this case when k is 10%, each peer only forwards the 
query to 10% of its neighbors with higher pheromone value, 
and the requester peer can receive 1 results while the flooding 
averagely visits to 15.84 number of peers. In this paper, we 
assume the degree d of a neighbor can be known, and the 
average degree of network is D which can be estimated. For 
each k, the search horizon, hk, is calculated by the following 
formula, where TTL = 2 in our experiments:  
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In order to gather the number of searched results, Nk, for 
each k during a flooding to small area, we designed a probe 
flooding mechanism (PFM) to obtain the probe table. In the 
PFM, each query packet is sent with a mark to identify which 
k it belongs to during the search steps. Figure 3 shows an 
example of the PFM. Step 1 shows that a requester peer, A, 
forwards a query to its neighbor, B, which belongs to the top 
10% neighbors with higher pheromone values. In Step 2, the 
peer B forwards the query to its neighbor, C, which belongs to 
the top 30% neighbors with higher pheromone values, and 
then the peer B has to rewrite the marked k in the query that is 
forwarded to the peer C form 10% to 30%. In Step 3, when a 
query is hit, the peer C returns the query with marked k = 30% 
to requester peer A.  Thus, the requester peer can calculate the 
number of searched results for each k in a flooding, and then 
generates a probe table. 

(2) Flooding phase: Since a probe table is generated in the 
probe phase, the first step in the flooding phase is to choose a 
proper k and compute a TTL value for next neighbor. The 
Figure 4 illustrates the pseudo code of AntSearch algorithm. 
For each k, we can easily calculate how many peers the 
flooding has to further search for retrieving a required number 
of results, N. Suppose Hk denote the further search horizon for 
a given k, and it should be equal to hk(N-nk) /nk. When Hk is 
computed, we can estimate a proper TTL for a flooding with 

a given k to reach the search horizon by the formula (2) in [4] 
as follows. 

1
)2(log )1( −

−
≈ − dk

DkHTTL k
Dkk

As the pseudo code shown in Figure 5, the requester peer 
has to calculate the required TTL value for each k, and finds a 
minimum k with a TTL less or equal to a TTL threshold, 
MAX_TTL. The MAX_TTL is generally set to 4. The k is then 
chosen and used in the following flooding iterations. After a 
proper k is chosen, the requester peer starts an iterative process 
to search the results (from line 7 to line 12 in Figure 4). 
During each iteration, the requester peer randomly chooses a 
neighbor, calculates a proper TTL to the neighbor, and then 
sends the query message with the chosen k and the calculated 
TTL to the neighbor (at line 10 in Figure 4, and the function 
calculate_TTL is implemented by the formula 3 to calculate a 
TTL value). The iteration continues until the required number 
of results is obtained or all neighbors are visited.  

There is a tradeoff between choosing a larger k value and 
choosing a smaller k value. A flooding with a larger k value 
results in more query messages. For example, when k = 100%, 
it means that all the neighbors will be flooded in each step of 
search. Hence, it will cause much network traffic. On the other 
hand, choosing a smaller k causes a larger TTL value to be 
calculated for a flooding, which means that the flooding will 
take longer to retrieve the required number of results. 

Recall that in the original DQ and DQ+ technique, a query 
packet is propagated to all the peers that can be reached with 
the TTL constraint. They do not consider the free-rider 
problem in a real P2P file sharing system. AntSearch 
algorithm uses the pheromone table to prevent flooding a 
query to a free-rider, in order to reduce redundant network 
traffic. 

4. Performance Evaluation 
In this section, we use three metrics to measure the 

performances of the AntSearch, DQ and DQ+ search 
algorithms. The simulation model is first described and then 
our experimental results are presented. Our simulation is 
processed by a simulation program which is based on that 
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Figure. 3. An example of probe phase in AntSearch. We give a 
simplification of probe in the figure, the peer A, B, C should 
use the flooding technique to forward query. In this scenario, 
the peer B is the top 10% peer in the pheronome table of the 
peer A, the peer C is the top 30% peer in the pheronome table 
of the peer B. And the peer C has the queried item. 
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used in [4]. This simulator runs on a real Gnutella network 
topology on February 2, 2005 [10], and simulates 160,000 
peers in the network topology. The average number of 
neighbors per peer is close to 24, and more detail information 
is provided in the technical report [11]. In the probe phase of 
AntSearch, a query is propagated to random three neighbors 
with TTL=2. Besides, in our experiments the default 
maximum TTL value is 4, and the timeout interval is set to the 
2.4 times TTL seconds. All the experimental setting is the 
same as paper [4]. 

During each simulation, 1,000 different objects are located 
over 160,000 peers, and each object has 1,600 replicas in the 
P2P network. The placement policy of replica follows the 
80/20 distribution [2] to simulate a large number of free-riders 
existing in the P2P file-sharing system. Average 20% peers 
contain the 80% replicas, and the other 20% replicas are 
randomly located in the rest 80% peers. All the queries are 
uniformly distributed to the network (randomly choosing a 
peer without the target file), and each search aims to retrieve 
100 results (N=100). For the computation formula of 
pheromone value, the parameter  is set to 0.7 in our 
experiments. According to our experiments, the parameter 
does not significantly affect the performance of search 
algorithm when it is set between 0.3 and 0.8. 

The evaluation metrics used in our experiments include the 
followings. (i) Number of searched files: for a query with a 
required number of results N, a good search algorithm should 
retrieve the number of results close to or over N. (ii) Number 

of query messages: the number of query messages is defined 
as the total amount of query messages generated during the 
flooding process. (iii) Search latency: the search latency is 
defined as the total time for the flooding process. 

Figure 6 shows the numbers of searched files in Dynamic 
Querying (DQ), the enhanced version of Dynamic Querying 
(DQ+), and the AntSearch (DQ-Ants) at 100 simulation runs. 
It is clearly to observe that, the number of searched files in DQ 
is less than the required number of results, because the DQ 
search algorithm is designed to use a very conservative 
approach to flooding queries. On the other hand, DQ+ and 
AntSearch algorithms always can retrieve the desired number 
of results. The most difference between them is that, the 
AntSearch sometimes retrieves a larger number of results than 
that in DQ, and this overshooting problem is caused by the 
misestimate of search horizon, which means the physical 
number of searched peers is larger than the estimated number 
of peers. 

Figure 7 depicts the numbers of query messages generated 
in the three algorithms at 100 simulation runs. First, we can 
observer that the total query message in AntSearch is much 

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Sequence number of run

N
um

be
r o

f p
ac

ke
ts

DQ-Ants
DQ
DQ+

Figure 7. The performance comparison of Dynamic Querying (DQ), 
the enhanced version of Dynamic Querying (DQ+), and our 
AntSearch (DQ-Ants) in the number of transmitted packets. 

80

90

100

110

120

130

140

150

160

170

180

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Sequence number of run

N
um

be
r o

f r
es

ul
ts

DQ-Ants
DQ
DQ+

Figure 6. The performance comparison of Dynamic Querying 
(DQ), the enhanced version of Dynamic Querying (DQ+), and our 
AntSearch (DQ-Ants) in the number of returned results. 1) Choosing_K ( Probe_Table, MAX_TTL)

2) Begin 
3) For (k=0.1 to 1.0 ) 

4)     Hk = 
k

kk

n
nNh )( −

5)     TTL =  
1

)2(log )1( −
−

− dk
DkH k

Dk

6)     if TTL <= MAX_TTL then break
7) End for 
8) return k 
9) End begin 

Figure 5. The pseudo code of Choosing k rate. 

1) AntSearch ( desired number of result N )
2) Begin 
3) Probe_Table= Probe()
4) If returned_Results >= N then return Results 
5) Else 
6) K = Choosing_K(Probe_Table, MAX_TTL)
7)  While returned_Results <= N
8) Neighbor = randomly choosing a unvisited neighbor 
9) d = degree(Neighbor)
10) TTL = Calculating _TTL(K, d)
11) Forwarding query to the Neighbor with K and TTL 
12)   End while
13) End if
14) return returned_Results 
15) End begin 

Figure 4. AntSearch  algorithm. 
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smaller than those in DQ and DQ+ algorithms. The total 
number of query message in AntSearch is around 6,000, and 
that in DQ and DQ+ is approximately 12,000. In other words, 
AntSearch algorithm average reduces 50% of query messages 
during a flooding. Recall that a query is propagated to all 
neighbors in DQ and DQ+ algorithms, and a query is only 
propagated to top k% of neighbors with higher pheromone 
values.  

Figure 8 depicts the search latency in the three search 
algorithm at 100 simulation runs. The search latency is an 
important factor for the P2P file sharing system. We can 
observe that the search latency in DQ algorithm is the longest, 
approximately 100 seconds in each simulation run. The DQ+ 
algorithm has the shortest search latency due to a greedy 
strategy applied in its iterative process. During each of 
iteration, the requester peer estimates to retrieve all the 
required number of results from a selected neighbor. Besides, 
the latency in AntSearch is higher but very close to that in 
DQ+ algorithm, because a query is only propagated to top k% 
of neighbors with higher pheromone values, and in some case 
the search needs more iterations to gain enough searched 
results. 

The overall comparison of the three performance metrics 
are listed in Figure 9. Average speaking, the number of query 
messages generated by a result is about 105 in DQ+, 107 in 
DQ, and 54 in AntSearch. It is clearly that the AntSearch did 
reduce approximately 50% network traffic for a query 
flooding, and the search latency in AntSearch is longer than 
that in the DQ+ algorithm by 5 seconds. Our experiments 
show that AntSearch can reduce a large amount of network 
traffic at an acceptable cost of search latency. 

5. Conclusions and Future works 
This paper was motivated by the need of a search algorithm 

for an unstructured P2P system that can provide better search 
performance in terms of network traffic cost and user latency. 
The main contribution of our work is that we propose a search 
algorithm, called ”AntSearch”, which can greatly reduce 
network traffic in a query flooding by only sending queries to 
those peers which are not likely to be free-riders. By allowing 
for a small space cost (the pheromone values in each peer), 
our experimented results show that AntSearch substantially 
reduces network traffic which is caused by sending queries to 
the free-riders, and completes a query at almost the same 
search latency as DQ+ search algorithm. Most importantly, 
AntSearch is simple and easy to implement into a real system.  
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