
IEICE TRANS. FUNDAMENTALS/COMMUN./ELECTRON./INF. & SYST., VOL. E85-A/B/C/D, No. 1 JANUARY 2007
1

PAPER Special Issue on Networking Technologies for Overlay Networks

 Manuscript received December 15, 2005; revised April 4, 2006.
† The authors are with Institute of Information Science, Academia

Sinica, Taiwan, ROC.

AntSearch: An Ant Search Algorithm in Unstructured Peer-to-
Peer Networks

Kai-Hsiang Yang†, member, Chi-Jen Wu† and Jan-Ming Ho†, Nonmembers

Summary
The most prevalent peer-to-peer (P2P) application till today is
file sharing, and unstructured P2P networks can support inherent
heterogeneity of peers, are highly resilient to peers’ failures, and
incur low overhead at peer arrivals and departures. Dynamic
querying (DQ) is a new flooding technique which could estimate
a proper time-to-live (TTL) value for a query flooding by
estimating the popularity of the searched files, and retrieve
sufficient results under controlled flooding range for reducing
network traffic. Recent researches show that a large amount of
peers in the P2P file sharing system are the free-riders, and
queries are seldom hit by those peers. The free-riding problem
causes a large amount of redundant messages in the DQ-like
search algorithm. In this paper, we proposed a new search
algorithm, called “AntSearch”, to solve the problem. In
AntSearch, each peer maintains its hit rate of previous queries,
and records a list of pheromone values of its immediate
neighbors. Based on the pheromone values, a query is only
flooded to those peers which are not likely to be the free-riders.
Our simulation results show that, compared with DQ and its
enhanced algorithm DQ+, the AntSearch algorithm averagely
reduces 50% network traffic at almost the same search latency as
DQ+, while retrieving sufficient results for a query with a given
required number of results.
Key words:
Peer-to-peer network, dynamic querying, flooding, free-riding.

1. Introduction

Peer-to-peer (P2P) networks such as Gnutella, KaZaA,
and BitTorrent have emerged as a new Internet computing
paradigm over the past few years. The most prevalent P2P
application till today is file sharing. In contrast to
structured P2P networks, search in unstructured P2P
networks is considerably more challenging because of the
lack of global routing and directory service. In spite of this
apparent limit, unstructured P2P networks have several
desirable properties: (1) they support inherent
heterogeneity of peers; (2) they are highly resilient to
peers’ failures, and (3) they incur low overhead at peer
arrivals and departures. Most importantly, they are simple
to implement and result in virtually no overhead in
topology maintenance. Consequently, many real-world
large-scale P2P networks are unstructured.

In a Gnutella P2P network, a blind flooding algorithm
is used to search results for a query under a time-to-live

(TTL) constraint. The biggest problem of the blind
flooding algorithm is that a single query may cause a large
amount of network traffic, and the second problem is that,
the number of search results can not be guaranteed. A
good search algorithm should be able to retrieve sufficient
(small or no overshooting) results for a query with a given
required number of results at low network traffic cost. For
this purpose, a new controlled flooding technique,
dynamic querying (DQ) [1], is proposed for these
requirements. It works as follows. (1) Probe phase: a
requester peer (a peer that generates a query) first floods a
query towards a few neighbors with a small TTL value for
estimating the popularity of the searched items. Then (2)
an iterative process takes place. During each of iterations,
the requester peer computes the number of peers to be
contacted for obtaining the desired number of results; then
it chooses a neighbor peer, calculates a TTL for a query
flooding to that neighbor, and propagates a query with that
TTL to the neighbor peer. This iterative process stops
when the desired number of results is returned, or all
neighbor peers have been visited. Intuitively, this flooding
algorithm is dynamic because the requester peer estimates
the item’s popularity to adjust a TTL value for each
flooding, so that sufficient results can be retrieved at lower
network traffic overhead than a blind flooding algorithm.

Jiang et al. [4] evaluated and analyzed the DQ
technique and proposed an enhanced DQ technique, DQ+,
which can further reduce network traffic cost and shorten
search latency. To avoid network traffic cost, the DQ+
technique uses a confidence interval method to provide a
safety margin on the estimate of the popularity of the
searched item. To achieve the lower search latency, the
DQ+ technique uses the greedy strategy in each of
iterations where the requester peer expects to find
sufficient results from a chosen neighbor. Compared with
the DQ technique, a query packet is only flooded to a
small amount of the required number of peers, and thus
the DQ+ technique is excellent in the performance of
search latency. Basically these two algorithms are still
based on a flooding technique.

Unfortunately, there is a serious problem, called the
free-riding problem, for a flooding technique. Current
research papers [2, 3] show that a large amount of peers in
P2P file sharing systems are free-riders, which is defined

YANG et al.: ANTSEARCH: AN ANT SEARCH ALGORITHM IN UNSTRUCTURED PEER-TO-PEER NETWORKS
2

as the peers sharing less than 100 files (about 96% in [2],
and 75% in [3]), and queries are seldom hit at these peers.
Thus, a query flooding causes a large amount of network
traffic for sending queries to those free-riders. For
example, the part (a) of Fig. 1 depicts an unstructured P2P
network which is formed by eight peers, and each peer has
three immediate neighbors. Suppose the peer A is the
requester peer, and the target files are located in peers B, E,
and H. It is easily to observe that each peer excluding peer
A receives three query packets from its immediate
neighbors. In this paper, we define a query packet/message
is redundant when it is sent to a peer and does not hit in
that peer. In the part (b) of Fig. 1, the total 21 packets
generated in a query flooding consist of 10 hit messages
(solid lines) and 11 redundant messages (dotted lines).
Hence, a query flooding will cause too much redundant
network traffic.

In this paper, we focus on the free-riding problem in
the DQ-like search algorithm, and propose a new search
algorithm, called “AntSearch”, to reduce the redundant
messages during a query flooding. In AntSearch, each
peer maintains a pheromone value to represent its hit rate
of previous received queries, and also records a list of
pheromone values for its immediate neighbors. Based on
these pheromone values, the AntSearch algorithm can
flood a query only to those peers which are not likely to be
free-riders. The main idea in the AntSearch algorithm is
using pheromone values to identify the free-riders, prevent
sending messages to those peer in order to reduce the
amount of redundant messages.

We have conducted extensive experiments to evaluate
the number of searched files, network traffic cost and
search latency in AntSearch. Compared with the DQ and
DQ+ search algorithms, our simulation results show that
the AntSearch algorithm averagely reduces 50% network
traffic at almost the same search latency as DQ+, while

retrieving sufficient results for a query with a given
required number of results.

The remainder of this paper is organized as follows.
Section 2 briefly reviews current related works in
unstructured P2P networks. Section 3 introduces the
system architecture of AntSearch, and its index structures
and search algorithm. Section 4 discusses several
important issues of AntSearch. The experimental
methodology and results are presented in Section 5.
Finally, we summarize our results and represent our
conclusions in Section 6.

2. Related Work

In this section, we review previous search algorithms in
unstructured P2P networks and describe the free-riding
problem in a P2P system. As mentioned above, a flooding
search algorithm is blind and expensive, since the network
does not provide any clues to facilitate a search. Hence, it
is very crucial to reduce network traffic, shorten search
latency, and retrieve sufficient results for a query. The
Gnutella developer community proposed the DQ
technique to guarantee that sufficient results can be
retrieved and a research result in [5] indicated that DQ
technique could predict a proper TTL value for a query
flooding in order to reduce network traffic load. Jiang et al.
[4] evaluated and analyzed the DQ technique and
proposed an enhanced DQ technique, DQ+. However, the
design of DQ and DQ+ techniques are still based on a
flooding search algorithm without considering the free-
riding problem in the P2P network.

Besides the DQ-like technique, several solutions [6, 7,
8] have also been proposed to reduce network traffic load
during a query flooding. Yang et al. [7] proposed a
technique in which each peer only forwards a query to a

A

C

GF

B D

E H

Requester Peer

doc

doc doc

A

C

GF

B D

E H

Requester Peer

docdoc

docdoc docdoc

A

B C D

E F

F H C E

F G

B E D H

G H

C H E G

Requester PeerA

B C D

E F

F H C E

F G

B E D H

G H

C H E G

Requester Peer

(a) (b)
Fig 1. The excessive traffic overhead in a flooding search algorithm. The part (a) depicts an unstructured P2P network topology, and peers B, E, and H
contain the target files. The part (b) shows the total flooding path when peer A floods a query with TTL = 2. A solid line represents a hit message, and a
dotted line represents a redundant message.

IEICE TRANS. FUNDAMENTALS/COMMUN./ELECTRON./INF. & SYST., VOL. E85-A/B/C/D, No. 1 JANUARY 2002
3

subset of its neighbors according to statistics of previous
query contents. This solution reduces network traffic;
however the number of retrieved results may not be able to
satisfy the query. Another limitation of this solution is that,
each peer has to spend large space for storing the statistics
about the query contents, and periodically maintain the
statistics. Another type of search algorithm is a well-
known random walk technique, which forwards a query to
a neighbor at each step until a file is found. Yatin et al. [6]
proposed an algorithm called GIA, based on the random
walk technique. Each peer maintains an index of files
stored in its neighbors and floods a query to those high
capacity peers. In general, random walk based algorithm
can reduce network traffic and enhance the system
scalability; however, it usually results in longer search
latency, and the number of retrieved results varies to a
great extent for different underlying network topologies
[9].

Recently, several research papers [12, 13] study the
user behavior in P2P systems, and discover the free-riding
problem is very serious in a flooding-based algorithm.
Feldman et al. [12] present an economic model of user
behavior in P2P systems, explore the effect of free-riders,
and propose several research problems for the free-riding
phenomenon. Ramaswamy et al. [13] introduce a concept
of utility function to measure the usefulness of every user
to the system, and proposed a free-rider control scheme.
They focus on modeling the free-riding phenomenon and
studying the user behavior in P2P systems. However, our
proposed AntSearch algorithm is a feasible solution for
solving the free-riding problem in an unstructured P2P
network.

3. Design of AntSearch

In this section we first give an overview of AntSearch
algorithm, and then present the data structures in each peer
and detail the search algorithm.

3.1 Overview

The AntSearch algorithm is designed for solving the free-
riding problem while searching in unstructured P2P
networks. Like the DQ search algorithm [1], AntSearch
algorithm comprises two search phases: (1) a probe phase
and (2) a flooding phase.

(1) Probe phase: when a requester peer starts to
process a query, it first has to flood probe queries to a few
neighbors with a small TTL (in general, flooding to three
neighbors with TTL=2) for estimating the popularity of
target files. When the small-area flooding ends, the
requester peer obtains the statistics information about the
searched files. By this statistics information, the requester
peer can predict how many results could be retrieved when

each step only floods the query to k% (k=10, 20…, 100) of
immediate neighbors. All these information will be stored
into a data structure which is called the “probe table”.

(2) Flooding phase: When the probe table is generated,
the requester peer has to decide two parameters about a
query flooding, the first one is the k value, and the other is
the TTL value. The k value represents how much
percentage of neighbors should be chosen to flood a query,
and the TTL value is an upper bound of flooding hops.
According to the probe table, a requester peer can estimate
the search cost (including search latency and flooding
messages) for each k value, and chooses a suitable k value
for the following query flooding. When a k value is
assigned, an iterative search process takes place. During
each of iterations, (1) the requester peer calculates how
many peers should be further contacted, and computes a
suitable TTL for a neighbor. (2) The requester peer then
propagates the query packet towards a neighbor, and all
the following peers only forwards the query to the k% of
neighbors with higher pheromone values. This iterative
process stops when the desired number of results is
returned, or all neighbors have been visited.

The main difference between the AntSearch algorithm
and the dynamic querying search algorithm [1], DQ+ [4],
is that the AntSearch algorithm improves the search
efficiency of a flooding by reducing the number of
messages sent by a peer and the number of peers that are
queried. According to the table of pheromone values, a
peer only propagates a query to top k% of its neighbors
with higher pheromone values. The pheromone table is
used to help a peer identify the neighbors which may be
free-riders. Fig. 2 illustrates search efficiency in the
AntSearch algorithm. Compared with the part (b) in Fig. 1,
each peer only floods the query to fewer neighbors with
higher pheromone values. Intuitively, the pheromone table
is a data structure to hint the direction where a target file is
located.

A

B C D

E F

F H C E

F G

B E D H

G H

C H E G

Requester Peer0.3

0.30.10.8

0.8 0.5 0.2 0.8

A

B C D

E F

F H C E

F G

B E D H

G H

C H E G

Requester Peer0.3

0.30.10.8

0.8 0.5 0.2 0.8

Fig. 2. An example of AntSearch, the number at the peer pi side is
presented the pheromone value of the peer pi.

YANG et al.: ANTSEARCH: AN ANT SEARCH ALGORITHM IN UNSTRUCTURED PEER-TO-PEER NETWORKS

4

2
3

1

12
3

1

3

1

1

0

)()(

)1()(

Dkd

Dkkd

Dkkdh

i
i

i
i

i

TTL

j

j
ik

∑

∑

∑ ∑

=

−

=

=

−

=

=

=

−=

3.2 Pheromone Table

The objective of storing a pheromone table in each peer is
to record the hit rate of previous queries in each immediate
neighbor, so that a peer can choose a neighbor with higher
pheromone value to forward a query. A neighbor’s
pheromone value primarily measures the probability it is a
free-rider. Each peer in the system maintains two values:
the first one is the number of hit queries Nh, and the other
is the number of total processed queries Nq. These two
values are permanently stored in a peer when it joins the
system in the first time. For a peer q, suppose that the dq is
the degree of peer q (which means peer q has dq number of
immediate neighbors), the pheromone value of peer q,
(pvq), can be computed as follows:

 , (1)

where the first part of the formula, Nh/Nq, is the hit rate of
previous queries in peer q, and the second part is the
average pheromone values in immediate neighbors of peer
q, which represents the effect of neighbors. The value α
(between 0 and 1) is a parameter to adjust the weights
between the hit rate of peer q and the average pheromone
value of the neighbors of peer q. Another benefit of using
the value α is to prevent a pheromone value from being
zero. A peer still has certain probability to be searched
when it first joins into the network. If a peer q is a free-
rider, the ratio of Nh/Nq will be very small. On the other
hand, if the peer q is a peer sharing a lot of popular files,
the ratio of Nh/Nq will increase rapidly. Note that the Nh
value will be added by one when a query is hit. These two
values are continually updated both in probe phase and
flooding phase. The pheromone table stored in a peer is
only updated under the following two situations. (1) When
a peer joins into the system, it first collects the pheromone
values of its immediate neighbors. The pheromone value is
sent within PING and PONG messages in the Gnutella
protocol. (2) When a peer receives a query, it then updates
each record of the pheromone table. When a neighbor
leaves the network, a peer immediately removes the
pheromone value of the neighbor from its pheromone table.
No other action is required in the AntSearch system, and it
is clear to observe that the maintenance cost for a
pheromone table is very limited.

3.3 AntSearch algorithm

The AntSearch algorithm is a controlled flooding
technique to search results for a query with a specified
required number of results, denoted by N. The search
process comprises two phases: (1) the probe phase and (2)
the flooding phase.

(1) Probe phase. When a requester peer produces a
query with a required number of results, N, it first floods a
“probe query” to a few neighbors with a small TTL (in
general, flooding to three neighbors with TTL=2). After
the flooding of the probe query finishes, the requester peer
collects the statistics about the numbers of searched files
and total searched peers. A probe table is then generated to
summarize the numbers of the searched files and the
searched peers when only flooding different k% of
neighbors in each step. Table 1 gives an example of a
probe table, which consists of three columns: the k value,
the number of searched files nk, and the estimated number
of searched peers, hk (also called the search horizon in this
paper).

Table 1: The Probe Table

k nk hk

10% 1 15.84
20% 3 63.36
30% 5 142.56
40% 8 253.44
50% 12 396.00
60% 12 570.24
70% 13 776.16
80% 15 1013.76
90% 16 1283.04

100% 17 1584.00

In this case when k is 10%, each peer only forwards a
query to 10% of its neighbors with higher pheromone
values, and the requester peer can search 1 file while the
flooding averagely visits to 15.84 number of peers. In this
paper, we assume the degree d of a neighbor can be
known, and the average degree of network is D which can
be estimated. For each k, the search horizon, hk, is
calculated by the following formula, where TTL = 2 in our
experiments.

(2)

In order to gather the number of searched files, nk, for
each k during a single flooding to small area, we designed
a probe flooding mechanism (PFM) to obtain all the
needed information for a probe table. In the PFM, each
query packet is sent with a mark to identify which k it
belongs to during the search steps. Fig. 3 shows an
example of the PFM. Step 1 represents that a requester
peer, A, forwards a query to its neighbor, B, which

)1(1 αα −+×=
∑
=

q

d

i
i

q

hq
d

q

pv

N
Npv

IEICE TRANS. FUNDAMENTALS/COMMUN./ELECTRON./INF. & SYST., VOL. E85-A/B/C/D, No. 1 JANUARY 2002
5

1
)2(log)1(−

−
≈ − dk

DkHTTL k
Dkk

belongs to the top 10% neighbors with higher pheromone
values. In Step 2, the peer B forwards the query to its
neighbor, C, which belongs to the top 30% neighbors with
higher pheromone values. Before forwarding the query to
peer C, peer B has to rewrite the new k value into the mark
in the query from 10% to 30%. In Step 3, when a query is
hit, the peer C returns a hit message with the mark k =
30% to the requester peer A. Thus, the requester peer can
calculate the number of searched files for each different k
after the flooding of a probe query finishes, and then
generates a probe table.

(2) Flooding phase: Since a probe table is already
generated, the first step in the flooding phase is to choose
a proper k and compute a TTL value for the query. Fig. 4
illustrates the pseudo code of the AntSearch algorithm.
For each k, we can easily calculate how many peers the
flooding has to further search for retrieving a required
number of results, N. Suppose Hk denote the further search
horizon for a given k, and it could be estimated by hk(N-nk)
/nk. When the Hk is computed, we can estimate a proper
TTL for a flooding with a given k to reach the search
horizon by the following formula (2) in [4].

 (3)

Here we start to introduce the method for choosing a
proper k value. Fig. 5 shows the pseudo code of the
function “Choosing_K”. As shown in Fig. 5, a requester
peer has to calculate the required TTL value for each k,
and finds a minimum k with a TTL less than or equal to a
TTL threshold, the MAX_TTL. (The MAX_TTL is generally
set to 4).

After a proper k is chosen, the requester peer starts an
iterative process to search the results (from line 7 to line
12 in Fig. 4). During each of iteration, the requester peer
randomly chooses a neighbor and calculates a proper TTL
for the neighbor. It then sends out a query with the chosen

k and the calculated TTL to the neighbor (at line 10 in Fig.
4, and the function Calculating_TTL is implemented by
the formula 3 to calculate a TTL value for a given k value).
The iteration continues until the required number of files
is obtained or all neighbors are visited.

There is a tradeoff between choosing a larger k value
and choosing a smaller one. A flooding with a larger k
value results in more query messages. For example, when
k = 100%, all the neighbors will be searched in each step
of a flooding. Hence, it will cause too much network
traffic. On the other hand, choosing a smaller k value will
result in a larger TTL value to be calculated to reach the
search horizon, so the flooding will take longer to retrieve
the required number of files.

Recall that in the original DQ and DQ+ techniques, a
query packet is propagated to all the peers that can be
reached within the TTL constraint. They do not consider
the free-riding problem in a real P2P file sharing system.
The AntSearch algorithm uses the pheromone table to
prevent flooding a query to a free-rider, in order to reduce
redundant network traffic.

 1) AntSearch (desired number of result N)
2) Begin
3) Probe_Table= Probe()
4) If returned_Results >= N then return Results
5) Else
6) K = Choosing_K(Probe_Table, MAX_TTL)
7) While returned_Results <= N
8) Neighbor = randomly choosing a unvisited neighbor
9) d = degree(Neighbor)
10) TTL = Calculating _TTL(K, d)
11) Forwarding query to the Neighbor with K and TTL
12) End while
13) End if
14) return returned_Results
15) End begin

 Fig. 4. Pseudo code of the AntSearch algorithm.

A B

C

10%

20%

30%
40%

50%

10%

20%

30%
Query Hit

Step 1

Step 2

Step 3

A B

C

10%

20%

30%
40%

50%

10%

20%

30%
Query Hit

Step 1

Step 2

Step 3

 Fig. 3. An example of a probe phase in the AntSearch system. Peer A is
the requester peer, and peer B belongs to the top 10% peers in the
pheronome table of peer A. Peer C belongs to the top 30% peers in the
pheronome table of peer B, and it contains a target file.

 1) Choosing_K (Probe_Table, MAX_TTL)
2) Begin
3) For (k=0.1 to 1.0)

4) Hk =
k

kk

n
nNh)(−

5) TTL =
1

)2(log)1(−
−

− dk
DkH k

Dk

6) if TTL <= MAX_TTL then break
7) End for
8) return k
9) End begin

 Fig. 5. The pseudo code of choosing k rate.

YANG et al.: ANTSEARCH: AN ANT SEARCH ALGORITHM IN UNSTRUCTURED PEER-TO-PEER NETWORKS

6

4. Discussion

In this section, we discuss several important issues in
terms of scalability and load balancing, convergence
property of pheromone table, and file diversity of the
AntSearch algorithm.

4.1 Scalability and Load Balancing

It is well known that Gnutella systems are not scalable
due to their widespread use of flooding. To solve this
problem, Jiang et al [4] proposed a Dynamic Query
algorithm to averagely reduce 50% network traffic. Hence,
the DQ-like systems are more scalable than the Gnutella
systems. In this paper, our AntSearch algorithm averagely
reduces 50% network traffic in the DQ-like systems.
Therefore, the AntSearch system is more scalable than the
DQ-like systems.

To consider the load balancing issue, the non free-rider
nodes may suffer from heavier network traffic load than
the free-rider nodes do in our AntSearch network. This is
because our AntSearch algorithm is designed to reduce the
flooding messages which will be sent to free-rider nodes.
However, in a flooding-based network, a query will be
flooded to all nodes in a flooding region with a TTL
constraint. Hence, load in a non free-rider node in the
AntSearch network is equivalent to load in “anyone” node
in a flooding-based P2P network.

Many research papers have addressed the load
imbalance problem in unstructured P2P systems. Recent
work [9, 15, 16] considers applying a static replication
mechanism on the Gnutella network. The authors show
that replicating objects proportionally to their population
will achieve optimal load balance, and shorten average
search latency. In [17], the authors proposed a distributed
caching protocol for Gnutella-like system, which
distributes index cache among nodes and divides the
searching space into multiple layers. This protocol can
significantly balance network traffic load for a query, and
we believe that our AntSearch algorithm can collaborate
well with these algorithms.

4.2 Convergence Property of Pheromone Table

In this section, we discuss about the convergence
property of pheromone table in the AntSearch algorithm,
and also show that the pheromone tables only need to
locally converge. Recall that in the design of the
AntSearch algorithm, each node only needs to know
which of its immediate neighbors are likely to be the free-
rider nodes before it forwards a query message, and does
not send any query message to those neighbors. Indeed,
when the pheromone tables only locally converge, the
flooding paths of the same queries issued at different time
are probably different, but the AntSearch algorithm still

can find efficient results for a query. It is the reason why
our AntSearch system can work well when each
pheromone table converges locally.

Moreover, another reason to our design is that nodes in
the P2P systems are extremely transient, so that it is
impossible to reach a globally convergence state. Some
analyses [3] for the Gnutella and Napster systems indicate
that the average online time of a node is around 60
minutes. For a large P2P system of 100,000 nodes, this
implies a high churn rate of over 1600 nodes joining and
leaving the system per minute. This high churn rate makes
the pheromone tables difficult to globally converge. Our
AntSearch algorithm, therefore, is very suitable and easy
to implement for a real P2P system.

4.3 File Diversity

In this section, we discuss and show that the proposed
AntSearch algorithm has the same ability to search the
non-popular files as a flooding-based algorithm does.

First the search region in the AntSearch algorithm is
limited and bounded by that in a flooding-based algorithm
under the same TTL constraint. If a file is needed by
minorities or it is created recently, the AntSearch
algorithm will realize this during the probe phase of the
search algorithm. Recall that the probe phase is to flood
probe queries to a small region (usually, three neighbors
with TTL=2) for estimating the popularity of target files.
After the probe phase finishes, the number of searched
files, nk, in a probe table will be very small, so that the
AntSearch algorithm selects a larger k value to find
sufficient results. When k is chosen to a maximal value
(1.0), all the neighbors are flooded for this query, and the
search region is equivalent to that in a flooding-based
algorithm.

Unfortunately, even though using a flooding-based
algorithm to search, paper [14] tells us that some queries
still can not return results. They measured the traffic
characteristics of the Gnutella network from multiple
vantage points in the Planet Lab, and showed that average
18% queries can not find results, and among two-third of
which, there are results available in the network. The
result implies that our AntSearch algorithm suffers from
the same problem in a flooding-based algorithm. The
paper [14] had proposed a hybrid search algorithm to
increase search region for solving this problem, and we
believe that our AntSearch algorithm can collaborate well
with their solutions.

5. Performance Evaluation

In this section, we use three metrics to measure the
performances of the AntSearch, DQ and DQ+ search
algorithms. The simulation model is first described and

IEICE TRANS. FUNDAMENTALS/COMMUN./ELECTRON./INF. & SYST., VOL. E85-A/B/C/D, No. 1 JANUARY 2002
7

then our simulation results are presented. Our simulator is
based on that used in [4], which runs on a real Gnutella
network topology on February 2, 2005 [10], and simulates
160,000 peers in this network. The average number of
neighbors per peer is close to 24, and more detail
information is provided in the technical report [11]. In the
probe phase of the AntSearch algorithm, a query is
propagated to random three neighbors with TTL=2, and in
our experiments the default maximum TTL value is 4
seconds, and the timeout is set to 2.4 times TTL seconds.
All the experimental setting is the same as that in [4].

During each simulation run, 1,000 different objects are
located over 160,000 peers, and each object has 1,600
replicas in the P2P network. The placement policy of
replicas follows the 80/20 distribution [2] to simulate a
large number of free-riders existing in the P2P file-sharing
system. Average 20% peers contain the 80% replicas, and
the other 20% replicas are randomly located in the rest
80% peers. All the queries are uniformly distributed to the
network (randomly choosing a peer without the searched
file as the source peer to issue a query), and each query
aims to retrieve 100 results (N=100). In formula (1) of
pheromone value, the parameter α is set to 0.7. According
to our extensive experiments, the parameter α does not
significantly affect the performance of the AntSearch
algorithm when it is set between 0.3 and 0.8.

The evaluation metrics used in our experiments include
the followings. (i) Number of searched files: for a query
with a required number of results, N, a good search
algorithm should retrieve the number of results over but
close to N. (ii) Per result cost: we define the per result cost
as the total amount of query messages divided by the
number of searched results. This metric measures how
many average query messages generated to gain a result.

(iii) Search latency: the search latency is defined as total
time for the query process.

Fig. 6 shows the number of searched results in the
Dynamic Querying (DQ), the enhanced version of
Dynamic Querying (DQ+), and the AntSearch (DQ-Ants)
algorithms at 100 simulation runs. It is clearly to observe
that, the number of searched results in DQ is less than the
required number of results (N=100), because the DQ
search algorithm is designed to use a very conservative
approach to flooding queries. On the other hand, the DQ+
and AntSearch algorithms always can retrieve the desired
number of results. The most difference between them is
that, the AntSearch sometimes retrieves a larger number of
results than that in DQ+, and this overshooting problem is
caused by the misestimate of search horizon, which means
the actual number of searched peers is larger than the
estimated one.

0

20

40

60

80

100

120

140

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Seqence number of run

N
um

be
r

of
 la

te
nc

ie
s

DQ-Ants

DQ

DQ+

Fig. 8. The performance comparison of Dynamic Querying (DQ), the
enhanced version of Dynamic Querying (DQ+), and our AntSearch (DQ-
Ants) algorithms in search latency.

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Sequence number of run

N
u

m
be

r
of

 p
ac

ke
ts

DQ-Ants

DQ

DQ+

Fig. 7. The performance comparison of Dynamic Querying (DQ), the
enhanced version of Dynamic Querying (DQ+), and our AntSearch (DQ-
Ants) algorithms in the number of query messages.

80

90

100

110

120

130

140

150

160

170

180

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Sequence number of run

N
u

m
b

er
 o

f
re

su
lt

s

DQ-Ants

DQ

DQ+

Fig. 6. The performance comparison of Dynamic Querying (DQ), the
enhanced version of Dynamic Querying (DQ+), and our AntSearch (DQ-
Ants) algorithms in the number of searched results.

YANG et al.: ANTSEARCH: AN ANT SEARCH ALGORITHM IN UNSTRUCTURED PEER-TO-PEER NETWORKS

8

Fig. 7 depicts the total number of query messages
generated in the three algorithms at 100 simulation runs.
First, we can observe that the total number of query
messages in the AntSearch algorithm is much smaller than
those in the DQ and DQ+ algorithms. The total number of
query messages in the AntSearch algorithm is around
6,000, while those in the DQ and DQ+ algorithms are both
approximately 12,000. In other words, the AntSearch
algorithm average reduces 50% of query messages during
a query. Recall that a query is propagated to all neighbors
in the DQ and DQ+ algorithms, but it is only propagated
to top k% of neighbors with higher pheromone values.

Fig. 8 shows search latency in the three search
algorithms at 100 simulation runs. Search latency is an
important factor for the P2P file sharing system. We can
observe that search latency in the DQ algorithm is longest,
approximately 100 seconds at each simulation run. The
DQ+ algorithm has the shortest search latency due to a
greedy strategy applied in its iterative process. During
each of iteration, the requester peer estimates to retrieve
sufficient results from a selected neighbor. Besides, search
latency in the AntSearch algorithm is a little higher but
very close to that in the DQ+ algorithm, because a query is
only propagated to top k% of neighbors with higher
pheromone values, and in some cases the query needs
more iterations to gain enough results.

The overall performance comparison of the three
search algorithms are listed in Figure 9. Averagely
speaking, the per result cost (the number of query
messages generated by a result) is about 105 in the DQ+,
107 in the DQ, and 54 in the AntSearch algorithm. It is
clearly that the AntSearch algorithm did reduce
approximately 50% network traffic for a query, and search
latency in it is a little longer than that in the DQ+
algorithm by 5 seconds.

Figure 10 illustrates the performance metrics of the
AntSearch, and DQ+ algorithms under different number of
replicas. We can draw several conclusions by this result.
First, the AntSearch algorithm always has smaller per
result cost than that in the DQ+ algorithm under all
different number of replicas. Second, search latency in the
AntSearch algorithm is very similar to that in the DQ+
algorithm. Both of them produce short search latency.
Third, for the number of searched results, the AntSearch
algorithm can retrieve more results than the DQ+
algorithm does, especially when more replicas exist in the
P2P system. According to these performance metrics, it is
clearly that the AntSearch algorithm can reduce a large
amount of network traffic at an acceptable cost of search
latency, while receiving sufficient results for a query.

6. Conclusions

This paper was motivated by the need of a search
algorithm for an unstructured P2P system that can provide
better search performance in terms of network traffic cost
and search latency. The main contribution of our work is
that we propose a search algorithm, called ”AntSearch”,
which can greatly reduce network traffic in a query by
only sending queries to those peers which are not likely to
be free-riders. By allowing for a small space cost (the
pheromone values in each peer), our simulation results
show that AntSearch substantially reduces network traffic
which is caused by sending queries to the free-riders, and
completes a query at almost the same search latency as
DQ+ search algorithm. Most importantly, AntSearch is
scalable, simple and easy to implement into a real system.

0

50

100

150

200

250

300

350

400

450

500

400 800 1200 1600 2000 2400 2800 3200 3600

Number of Replcates

N
um

b
er

 o
f

R
es

u
lt
s,

 C
os

t,
 L

at
en

cy

Num. of results (DQ-Ant)

Num. of results (DQ+)

Per result cost (DQ-Ant)

Per result cost (DQ+)

Latency (DQ-Ant)

Latency (DQ+)

Fig. 10. The performance comparison of the enhanced version of Dynamic
Querying (DQ+), and our AntSearch (DQ-Ants) algorithms under different
number of replicas.

104 107

83

106 105

20

110

54

25

0

20

40

60

80

100

120

Average number of

results

Average per result

cost

Average number of

latencies

N
um

be
r

of
 r

es
ul

ts
, p

ac
ke

ts
,
la

te
n
ci

es

DQ-Ants

DQ

DQ+

Fig. 9. The overall performance comparison of Dynamic Querying (DQ),
the enhanced version of Dynamic Querying (DQ+), and our AntSearch
(DQ-Ants) algorithms.

IEICE TRANS. FUNDAMENTALS/COMMUN./ELECTRON./INF. & SYST., VOL. E85-A/B/C/D, No. 1 JANUARY 2002
9

Acknowledgments

The authors would like to thank Mr. Hongbo Jiang for the
support of simulator used in his work [4].

References

[1] A. Fisk, “Gnutella dynamic query protocol v0.1,” May 2003,
Http://www9.limewire.com/developr/dynamic_q-uery.html.

[2] Eytan Adar and Bernardo A. Huberman. "Free riding on gnutella,"
in Technical report, Xerox PARC, 10 Aug. 2000.

[3] Stefan Saroiu, P. Krishna Gummadi, Steven D. Gribble, “A
Measurement Study of Peer-to-Peer File Sharing Systems,” in
Proceedingns of the Multimedia Computing and Networking
(MMCN), January, 2002.

[4] Hongbo Jiang and Shuding Jin, ”Exploiting Dynamic Querying
like Flooding Techniques in Unstructured Peer-to-peer
Networks,” in Proceedingns of IEEE Internet Conference on
Network Protocol (ICNP), October, 2005.

[5] Daniel Stutzbach, Reza Rejaie, and Subhabrata Sen.
“Characterizing Unstructured Overlay Topologies in Modern P2P
File-Sharing Systems”, in Proceedingns of Internet Measurement
Conference (IMC), October, 2005.

[6] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Scott Shenker,
“Making Gnutella-like P2P Systems Scalable ,” In Proceedings of
ACM SIGCOMM 2003

[7] B. Yang and H. Garcia-Molina,”Improving search in Peer-to-Peer
networks,” In Proceedingns of the 22nd International Conference
on Distributed Computing Systems (ICDCS), 2002.

[8] V. Cholvi, P. A. Felber, and E. W. Biersack, “Efficient Search in
Unstructured Peer-to-Peer Networks,” in European Transactions
on Telecommunications, 15(6) , 2004.

[9] Qin Lv, Pei Cao, Edith Cohen, Kai Li and Scott Shenker, “Search
and Replication in Unstructured Peer-to-Peer Networks,” in
Proceedings of the 16th international conference on
Supercomputing (ICS) 2002.

[10] D. Shakkottai and R. Rejaie, “Characterizing the two-tier Gnutella
topology,” in Proceedings of the ACM SIGMETRICS (Poster),
June 2005.

[11] D. Shakkottai and R. Rejaie, “Characterizing today’s Gnutella
topology,” Technique Report CIS-TR-04-02, CIS, University of
Oregon, November 2004.

[12] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica, “Free-
Riding and Whitewashing in Peer-to-Peer Systems,” in
Proceedings of the ACM SIGCOMM'04 Workshop on Practice
and Theory of Incentives in Networked Systems (PINS), August
2004.

[13] L. Ramaswamy and L. Liu, "Free Riding: A New Challenge to
Peer-to-Peer File Sharing Systems". Peer-to-Peer Computing
Track, Hawaii International Conference on System Sciences
(HICSS-2003), January 2003

[14] B. Loo, R. Huebsch, I. Stoica, J. Hellerstein, "The case for a
hybrid P2P search infrastructure," in the proceedings of the 3nd
International workshop on Peer-to-Peer Systems (IPTPS '04),
February 2005.

[15] E. Cohen and S. Shenker, "Replication strategies in unstructured
peer-to-peer networks," in proceedings of the ACM SIGCOMM
conference, 2002.

[16] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Keleher,
"Adaptive replication in Peer-to-Peer systems," in proceedings of

the 24th IEEE international conference on distributed computing
systems 2004.

[17] C. Wang, L. Xiao, Y. Liu, P. Zheng, "Distributed caching and
adaptive search in multilayer P2P networks," in proceedings of the
24th IEEE international conference on distributed computing
systems 2004.

Kai-Hsiang Yang received a B.A.
degree in Department of Mathematics from
National Taiwan University and his Ph.D.
degree in Department of Computer Science
and Information Engineering from National
Taiwan University. He is currently a
Postdoctoral Fellow in the Computer
Systems and Communication Lab, Institute

of Information Science, Academia Sinica. His research interests
include Web mining, Peer-to-Peer computing, search engine
technique, network protocols and architecture, network security,
and information retrieval.

Chi-Jen Wu received the M.S.
degrees in Communication Engineering
from National Chung Cheng University,
Taiwan in 2004. He is currently a research
assistant in the Institute of Information
Science, Academia Sinica. His research
interests include Overlay network, Peer-to-
Peer network and Ad hoc network.

Jan-Ming Ho received his Ph.D. in
electrical engineering and computer science
from Northwestern University in 1989. He
received his B.S. in electrical engineering
from National Cheng Kung University in
1978 and his M.S. from the Institute of
Electronics, National Chiao Tung
University in 1980. He joined the Institute

of Information Science, Academia Sinica, Taiwan, R.O.C as a
associate research fellow in 1989, and was promoted to research
fellow in 1994. He was deputy director of the Institute from 2000
to 2003. He visited the IBM T. J. Watson Research Center in the
summers of 1987 and 1988, the Leonardo Fibonacci Institute for
the Foundations of Computer Science, Italy in summer 1992. He
is Associate Editor of IEEE Transaction on Multimedia. He is a
member of IEEE and ACM. He was Program Chair of
Symposium on Real-time Media Systems, Taipei, 1994 - 1998,
General Co-Chair of International Symposium on Multi-
Technology Information Processing, 1997 and will be General
Co-Chair of IEEE RTAS 2001. His research interests target the
integration of theory and application research, and include digital
archive technology, web services, information extraction and
knowledge management, content network and continuous video
streaming, and combinatorial optimization.

