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Summary 
The most prevalent peer-to-peer (P2P) application till today is 
file sharing, and unstructured P2P networks can support inherent 
heterogeneity of peers, are highly resilient to peers’ failures, and 
incur low overhead at peer arrivals and departures. Dynamic 
querying (DQ) is a new flooding technique which could estimate 
a proper time-to-live (TTL) value for a query flooding by 
estimating the popularity of the searched files, and retrieve 
sufficient results under controlled flooding range for reducing 
network traffic. Recent researches show that a large amount of 
peers in the P2P file sharing system are the free-riders, and 
queries are seldom hit by those peers. The free-riding problem 
causes a large amount of redundant messages in the DQ-like 
search algorithm. In this paper, we proposed a new search 
algorithm, called “AntSearch”, to solve the problem. In 
AntSearch, each peer maintains its hit rate of previous queries, 
and records a list of pheromone values of its immediate 
neighbors. Based on the pheromone values, a query is only 
flooded to those peers which are not likely to be the free-riders. 
Our simulation results show that, compared with DQ and its 
enhanced algorithm DQ+, the AntSearch algorithm averagely 
reduces 50% network traffic at almost the same search latency as 
DQ+, while retrieving sufficient results for a query with a given 
required number of results. 
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1. Introduction 

Peer-to-peer (P2P) networks such as Gnutella, KaZaA, 
and BitTorrent have emerged as a new Internet computing 
paradigm over the past few years. The most prevalent P2P 
application till today is file sharing. In contrast to 
structured P2P networks, search in unstructured P2P 
networks is considerably more challenging because of the 
lack of global routing and directory service. In spite of this 
apparent limit, unstructured P2P networks have several 
desirable properties: (1) they support inherent 
heterogeneity of peers; (2) they are highly resilient to 
peers’ failures, and (3) they incur low overhead at peer 
arrivals and departures. Most importantly, they are simple 
to implement and result in virtually no overhead in 
topology maintenance. Consequently, many real-world 
large-scale P2P networks are unstructured. 

In a Gnutella P2P network, a blind flooding algorithm 
is used to search results for a query under a time-to-live 

(TTL) constraint. The biggest problem of the blind 
flooding algorithm is that a single query may cause a large 
amount of network traffic, and the second problem is that, 
the number of search results can not be guaranteed. A 
good search algorithm should be able to retrieve sufficient 
(small or no overshooting) results for a query with a given 
required number of results at low network traffic cost. For 
this purpose, a new controlled flooding technique, 
dynamic querying (DQ) [1], is proposed for these 
requirements. It works as follows. (1) Probe phase: a 
requester peer (a peer that generates a query) first floods a 
query towards a few neighbors with a small TTL value for 
estimating the popularity of the searched items. Then (2) 
an iterative process takes place. During each of iterations, 
the requester peer computes the number of peers to be 
contacted for obtaining the desired number of results; then 
it chooses a neighbor peer, calculates a TTL for a query 
flooding to that neighbor, and propagates a query with that 
TTL to the neighbor peer. This iterative process stops 
when the desired number of results is returned, or all 
neighbor peers have been visited. Intuitively, this flooding 
algorithm is dynamic because the requester peer estimates 
the item’s popularity to adjust a TTL value for each 
flooding, so that sufficient results can be retrieved at lower 
network traffic overhead than a blind flooding algorithm.  

Jiang et al. [4] evaluated and analyzed the DQ 
technique and proposed an enhanced DQ technique, DQ+, 
which can further reduce network traffic cost and shorten 
search latency. To avoid network traffic cost, the DQ+ 
technique uses a confidence interval method to provide a 
safety margin on the estimate of the popularity of the 
searched item. To achieve the lower search latency, the 
DQ+ technique uses the greedy strategy in each of 
iterations where the requester peer expects to find 
sufficient results from a chosen neighbor. Compared with 
the DQ technique, a query packet is only flooded to a 
small amount of the required number of peers, and thus 
the DQ+ technique is excellent in the performance of 
search latency. Basically these two algorithms are still 
based on a flooding technique. 

Unfortunately, there is a serious problem, called the 
free-riding problem, for a flooding technique. Current 
research papers [2, 3] show that a large amount of peers in 
P2P file sharing systems are free-riders, which is defined  



YANG et al.: ANTSEARCH: AN ANT SEARCH ALGORITHM IN UNSTRUCTURED PEER-TO-PEER NETWORKS 
2 

 

 
as the peers sharing less than 100 files (about 96% in [2], 
and 75% in [3]), and queries are seldom hit at these peers. 
Thus, a query flooding causes a large amount of network 
traffic for sending queries to those free-riders. For 
example, the part (a) of Fig. 1 depicts an unstructured P2P 
network which is formed by eight peers, and each peer has 
three immediate neighbors. Suppose the peer A is the 
requester peer, and the target files are located in peers B, E, 
and H. It is easily to observe that each peer excluding peer 
A receives three query packets from its immediate 
neighbors. In this paper, we define a query packet/message 
is redundant when it is sent to a peer and does not hit in 
that peer. In the part (b) of Fig. 1, the total 21 packets 
generated in a query flooding consist of 10 hit messages 
(solid lines) and 11 redundant messages (dotted lines). 
Hence, a query flooding will cause too much redundant 
network traffic. 

In this paper, we focus on the free-riding problem in 
the DQ-like search algorithm, and propose a new search 
algorithm, called “AntSearch”, to reduce the redundant 
messages during a query flooding. In AntSearch, each 
peer maintains a pheromone value to represent its hit rate 
of previous received queries, and also records a list of 
pheromone values for its immediate neighbors. Based on 
these pheromone values, the AntSearch algorithm can 
flood a query only to those peers which are not likely to be 
free-riders. The main idea in the AntSearch algorithm is 
using pheromone values to identify the free-riders, prevent 
sending messages to those peer in order to reduce the 
amount of redundant messages.  

We have conducted extensive experiments to evaluate 
the number of searched files, network traffic cost and 
search latency in AntSearch. Compared with the DQ and 
DQ+ search algorithms, our simulation results show that 
the AntSearch algorithm averagely reduces 50% network 
traffic at almost the same search latency as DQ+, while 

retrieving sufficient results for a query with a given 
required number of results.  

The remainder of this paper is organized as follows. 
Section 2 briefly reviews current related works in 
unstructured P2P networks. Section 3 introduces the 
system architecture of AntSearch, and its index structures 
and search algorithm. Section 4 discusses several 
important issues of AntSearch. The experimental 
methodology and results are presented in Section 5. 
Finally, we summarize our results and represent our 
conclusions in Section 6.  

2. Related Work 

In this section, we review previous search algorithms in 
unstructured P2P networks and describe the free-riding 
problem in a P2P system. As mentioned above, a flooding 
search algorithm is blind and expensive, since the network 
does not provide any clues to facilitate a search. Hence, it 
is very crucial to reduce network traffic, shorten search 
latency, and retrieve sufficient results for a query. The 
Gnutella developer community proposed the DQ 
technique to guarantee that sufficient results can be 
retrieved and a research result in [5] indicated that DQ 
technique could predict a proper TTL value for a query 
flooding in order to reduce network traffic load. Jiang et al. 
[4] evaluated and analyzed the DQ technique and 
proposed an enhanced DQ technique, DQ+. However, the 
design of DQ and DQ+ techniques are still based on a 
flooding search algorithm without considering the free-
riding problem in the P2P network.  

Besides the DQ-like technique, several solutions [6, 7, 
8] have also been proposed to reduce network traffic load 
during a query flooding. Yang et al. [7] proposed a 
technique in which each peer only forwards a query to a 

A

C

GF

B D

E H

Requester Peer

doc

doc doc

A

C

GF

B D

E H

Requester Peer

docdoc

docdoc docdoc
             

A

B C D

E F

F H C E

F G

B E D H

G H

C H E G

Requester PeerA

B C D

E F

F H C E

F G

B E D H

G H

C H E G

Requester Peer

  
 

(a)                                                 (b)    
Fig 1. The excessive traffic overhead in a flooding search algorithm. The part (a) depicts an unstructured P2P network topology, and peers B, E, and H 
contain the target files. The part (b) shows the total flooding path when peer A floods a query with TTL = 2. A solid line represents a hit message, and a 
dotted line represents a redundant message. 
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subset of its neighbors according to statistics of previous 
query contents. This solution reduces network traffic; 
however the number of retrieved results may not be able to 
satisfy the query. Another limitation of this solution is that, 
each peer has to spend large space for storing the statistics 
about the query contents, and periodically maintain the 
statistics. Another type of search algorithm is a well-
known random walk technique, which forwards a query to 
a neighbor at each step until a file is found. Yatin et al. [6] 
proposed an algorithm called GIA, based on the random 
walk technique. Each peer maintains an index of files 
stored in its neighbors and floods a query to those high 
capacity peers. In general, random walk based algorithm 
can reduce network traffic and enhance the system 
scalability; however, it usually results in longer search 
latency, and the number of retrieved results varies to a 
great extent for different underlying network topologies 
[9]. 

Recently, several research papers [12, 13] study the 
user behavior in P2P systems, and discover the free-riding 
problem is very serious in a flooding-based algorithm. 
Feldman et al. [12] present an economic model of user 
behavior in P2P systems, explore the effect of free-riders, 
and propose several research problems for the free-riding 
phenomenon. Ramaswamy et al. [13] introduce a concept 
of utility function to measure the usefulness of every user 
to the system, and proposed a free-rider control scheme. 
They focus on modeling the free-riding phenomenon and 
studying the user behavior in P2P systems. However, our 
proposed AntSearch algorithm is a feasible solution for 
solving the free-riding problem in an unstructured P2P 
network. 

3. Design of AntSearch 

In this section we first give an overview of AntSearch 
algorithm, and then present the data structures in each peer 
and detail the search algorithm. 

3.1 Overview 

The AntSearch algorithm is designed for solving the free-
riding problem while searching in unstructured P2P 
networks. Like the DQ search algorithm [1], AntSearch 
algorithm comprises two search phases: (1) a probe phase 
and (2) a flooding phase. 

(1) Probe phase: when a requester peer starts to 
process a query, it first has to flood probe queries to a few 
neighbors with a small TTL (in general, flooding to three 
neighbors with TTL=2) for estimating the popularity of 
target files. When the small-area flooding ends, the 
requester peer obtains the statistics information about the 
searched files. By this statistics information, the requester 
peer can predict how many results could be retrieved when 

each step only floods the query to k% (k=10, 20…, 100) of 
immediate neighbors. All these information will be stored 
into a data structure which is called the “probe table”. 

(2) Flooding phase: When the probe table is generated, 
the requester peer has to decide two parameters about a 
query flooding, the first one is the k value, and the other is 
the TTL value. The k value represents how much 
percentage of neighbors should be chosen to flood a query, 
and the TTL value is an upper bound of flooding hops. 
According to the probe table, a requester peer can estimate 
the search cost (including search latency and flooding 
messages) for each k value, and chooses a suitable k value 
for the following query flooding. When a k value is 
assigned, an iterative search process takes place. During 
each of iterations, (1) the requester peer calculates how 
many peers should be further contacted, and computes a 
suitable TTL for a neighbor. (2) The requester peer then 
propagates the query packet towards a neighbor, and all 
the following peers only forwards the query to the k% of 
neighbors with higher pheromone values. This iterative 
process stops when the desired number of results is 
returned, or all neighbors have been visited. 

The main difference between the AntSearch algorithm 
and the dynamic querying search algorithm [1], DQ+ [4], 
is that the AntSearch algorithm improves the search 
efficiency of a flooding by reducing the number of 
messages sent by a peer and the number of peers that are 
queried. According to the table of pheromone values, a 
peer only propagates a query to top k% of its neighbors 
with higher pheromone values. The pheromone table is 
used to help a peer identify the neighbors which may be 
free-riders. Fig. 2 illustrates search efficiency in the 
AntSearch algorithm. Compared with the part (b) in Fig. 1, 
each peer only floods the query to fewer neighbors with 
higher pheromone values. Intuitively, the pheromone table 
is a data structure to hint the direction where a target file is 
located.  
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Fig. 2. An example of AntSearch, the number at the peer pi side is 
presented the pheromone value of the peer pi. 
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3.2 Pheromone Table 

The objective of storing a pheromone table in each peer is 
to record the hit rate of previous queries in each immediate 
neighbor, so that a peer can choose a neighbor with higher 
pheromone value to forward a query. A neighbor’s 
pheromone value primarily measures the probability it is a 
free-rider. Each peer in the system maintains two values: 
the first one is the number of hit queries Nh, and the other 
is the number of total processed queries Nq. These two 
values are permanently stored in a peer when it joins the 
system in the first time. For a peer q, suppose that the dq is 
the degree of peer q (which means peer q has dq number of 
immediate neighbors), the pheromone value of peer q, 
(pvq), can be computed as follows: 
                 

 
         , (1) 

 
where the first part of the formula, Nh/Nq, is the hit rate of 
previous queries in peer q, and the second part is the 
average pheromone values in immediate neighbors of peer 
q, which represents the effect of neighbors. The value α 
(between 0 and 1) is a parameter to adjust the weights 
between the hit rate of peer q and the average pheromone 
value of the neighbors of peer q. Another benefit of using 
the value α is to prevent a pheromone value from being 
zero. A peer still has certain probability to be searched 
when it first joins into the network. If a peer q is a free-
rider, the ratio of Nh/Nq will be very small. On the other 
hand, if the peer q is a peer sharing a lot of popular files, 
the ratio of Nh/Nq will increase rapidly. Note that the Nh 
value will be added by one when a query is hit. These two 
values are continually updated both in probe phase and 
flooding phase. The pheromone table stored in a peer is 
only updated under the following two situations. (1) When 
a peer joins into the system, it first collects the pheromone 
values of its immediate neighbors. The pheromone value is 
sent within PING and PONG messages in the Gnutella 
protocol. (2) When a peer receives a query, it then updates 
each record of the pheromone table. When a neighbor 
leaves the network, a peer immediately removes the 
pheromone value of the neighbor from its pheromone table. 
No other action is required in the AntSearch system, and it 
is clear to observe that the maintenance cost for a 
pheromone table is very limited. 

3.3 AntSearch algorithm 

The AntSearch algorithm is a controlled flooding 
technique to search results for a query with a specified 
required number of results, denoted by N. The search 
process comprises two phases: (1) the probe phase and (2) 
the flooding phase. 

(1) Probe phase. When a requester peer produces a 
query with a required number of results, N, it first floods a 
“probe query” to a few neighbors with a small TTL (in 
general, flooding to three neighbors with TTL=2). After 
the flooding of the probe query finishes, the requester peer 
collects the statistics about the numbers of searched files 
and total searched peers. A probe table is then generated to 
summarize the numbers of the searched files and the 
searched peers when only flooding different k% of 
neighbors in each step. Table 1 gives an example of a 
probe table, which consists of three columns: the k value, 
the number of searched files nk, and the estimated number 
of searched peers, hk (also called the search horizon in this 
paper).  
 

Table 1: The Probe Table 

k  nk hk 

10% 1 15.84 
20% 3 63.36 
30% 5 142.56 
40% 8 253.44 
50% 12 396.00 
60% 12 570.24 
70% 13 776.16 
80% 15 1013.76 
90% 16 1283.04 

100% 17 1584.00 
 

In this case when k is 10%, each peer only forwards a 
query to 10% of its neighbors with higher pheromone 
values, and the requester peer can search 1 file while the 
flooding averagely visits to 15.84 number of peers. In this 
paper, we assume the degree d of a neighbor can be 
known, and the average degree of network is D which can 
be estimated. For each k, the search horizon, hk, is 
calculated by the following formula, where TTL = 2 in our 
experiments.  
 
 
 
 

                                 
 
 

(2)                         
 

In order to gather the number of searched files, nk, for 
each k during a single flooding to small area, we designed 
a probe flooding mechanism (PFM) to obtain all the 
needed information for a probe table. In the PFM, each 
query packet is sent with a mark to identify which k it 
belongs to during the search steps. Fig. 3 shows an 
example of the PFM. Step 1 represents that a requester 
peer, A, forwards a query to its neighbor, B, which 
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belongs to the top 10% neighbors with higher pheromone 
values. In Step 2, the peer B forwards the query to its 
neighbor, C, which belongs to the top 30% neighbors with 
higher pheromone values. Before forwarding the query to 
peer C, peer B has to rewrite the new k value into the mark 
in the query from 10% to 30%. In Step 3, when a query is 
hit, the peer C returns a hit message with the mark k = 
30% to the requester peer A.  Thus, the requester peer can 
calculate the number of searched files for each different k 
after the flooding of a probe query finishes, and then 
generates a probe table. 

(2) Flooding phase: Since a probe table is already 
generated, the first step in the flooding phase is to choose 
a proper k and compute a TTL value for the query. Fig. 4 
illustrates the pseudo code of the AntSearch algorithm. 
For each k, we can easily calculate how many peers the 
flooding has to further search for retrieving a required 
number of results, N. Suppose Hk denote the further search 
horizon for a given k, and it could be estimated by hk(N-nk) 
/nk. When the Hk is computed, we can estimate a proper 
TTL for a flooding with a given k to reach the search 
horizon by the following formula (2) in [4]. 
 
                                                                                           
                                                                                         (3) 
 

Here we start to introduce the method for choosing a 
proper k value. Fig. 5 shows the pseudo code of the 
function “Choosing_K”. As shown in Fig. 5, a requester 
peer has to calculate the required TTL value for each k, 
and finds a minimum k with a TTL less than or equal to a 
TTL threshold, the MAX_TTL. (The MAX_TTL is generally 
set to 4).  

After a proper k is chosen, the requester peer starts an 
iterative process to search the results (from line 7 to line 
12 in Fig. 4). During each of iteration, the requester peer 
randomly chooses a neighbor and calculates a proper TTL 
for the neighbor. It then sends out a query with the chosen 

k and the calculated TTL to the neighbor (at line 10 in Fig. 
4, and the function Calculating_TTL is implemented by 
the formula 3 to calculate a TTL value for a given k value). 
The iteration continues until the required number of files 
is obtained or all neighbors are visited.  

There is a tradeoff between choosing a larger k value 
and choosing a smaller one. A flooding with a larger k 
value results in more query messages. For example, when 
k = 100%, all the neighbors will be searched in each step 
of a flooding. Hence, it will cause too much network 
traffic. On the other hand, choosing a smaller k value will 
result in a larger TTL value to be calculated to reach the 
search horizon, so the flooding will take longer to retrieve 
the required number of files. 

Recall that in the original DQ and DQ+ techniques, a 
query packet is propagated to all the peers that can be 
reached within the TTL constraint. They do not consider 
the free-riding problem in a real P2P file sharing system. 
The AntSearch algorithm uses the pheromone table to 
prevent flooding a query to a free-rider, in order to reduce 
redundant network traffic. 

 

 

 1) AntSearch ( desired number of result N ) 
2) Begin 
3) Probe_Table= Probe() 
4) If returned_Results >= N then return Results 
5) Else  
6)   K = Choosing_K(Probe_Table, MAX_TTL) 
7)   While returned_Results <= N 
8)     Neighbor = randomly choosing a unvisited neighbor 
9)     d = degree(Neighbor) 
10)     TTL = Calculating _TTL(K, d) 
11)     Forwarding query to the Neighbor with K and TTL 
12)   End while 
13) End if   
14) return returned_Results 
15) End begin 

 Fig. 4. Pseudo code of the AntSearch  algorithm. 
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 Fig. 3. An example of a probe phase in the AntSearch system. Peer A is 
the requester peer, and peer B belongs to the top 10% peers in the 
pheronome table of peer A. Peer C belongs to the top 30% peers in the 
pheronome table of peer B, and it contains a target file. 
 

 

 1) Choosing_K ( Probe_Table, MAX_TTL) 
2) Begin 
3)   For (k=0.1 to 1.0 ) 

4)     Hk = 
k

kk

n
nNh )( −  

5)     TTL =  
1

)2(log )1( −
−

− dk
DkH k

Dk  

6)     if TTL <= MAX_TTL then break 
7)   End for 
8)   return k 
9) End begin 

 
 Fig. 5. The pseudo code of choosing k rate. 
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4. Discussion 

In this section, we discuss several important issues in 
terms of scalability and load balancing, convergence 
property of pheromone table, and file diversity of the 
AntSearch algorithm. 

4.1 Scalability and Load Balancing 

It is well known that Gnutella systems are not scalable 
due to their widespread use of flooding. To solve this 
problem, Jiang et al [4] proposed a Dynamic Query 
algorithm to averagely reduce 50% network traffic. Hence, 
the DQ-like systems are more scalable than the Gnutella 
systems. In this paper, our AntSearch algorithm averagely 
reduces 50% network traffic in the DQ-like systems. 
Therefore, the AntSearch system is more scalable than the 
DQ-like systems. 

To consider the load balancing issue, the non free-rider 
nodes may suffer from heavier network traffic load than 
the free-rider nodes do in our AntSearch network. This is 
because our AntSearch algorithm is designed to reduce the 
flooding messages which will be sent to free-rider nodes. 
However, in a flooding-based network, a query will be 
flooded to all nodes in a flooding region with a TTL 
constraint. Hence, load in a non free-rider node in the 
AntSearch network is equivalent to load in “anyone” node 
in a flooding-based P2P network.  

Many research papers have addressed the load 
imbalance problem in unstructured P2P systems. Recent 
work [9, 15, 16] considers applying a static replication 
mechanism on the Gnutella network. The authors show 
that replicating objects proportionally to their population 
will achieve optimal load balance, and shorten average 
search latency. In [17], the authors proposed a distributed 
caching protocol for Gnutella-like system, which 
distributes index cache among nodes and divides the 
searching space into multiple layers. This protocol can 
significantly balance network traffic load for a query, and 
we believe that our AntSearch algorithm can collaborate 
well with these algorithms. 

4.2 Convergence Property of Pheromone Table 

In this section, we discuss about the convergence 
property of pheromone table in the AntSearch algorithm, 
and also show that the pheromone tables only need to 
locally converge. Recall that in the design of the 
AntSearch algorithm, each node only needs to know 
which of its immediate neighbors are likely to be the free-
rider nodes before it forwards a query message, and does 
not send any query message to those neighbors. Indeed, 
when the pheromone tables only locally converge, the 
flooding paths of the same queries issued at different time 
are probably different, but the AntSearch algorithm still 

can find efficient results for a query. It is the reason why 
our AntSearch system can work well when each 
pheromone table converges locally. 

Moreover, another reason to our design is that nodes in 
the P2P systems are extremely transient, so that it is 
impossible to reach a globally convergence state. Some 
analyses [3] for the Gnutella and Napster systems indicate 
that the average online time of a node is around 60 
minutes. For a large P2P system of 100,000 nodes, this 
implies a high churn rate of over 1600 nodes joining and 
leaving the system per minute. This high churn rate makes 
the pheromone tables difficult to globally converge. Our 
AntSearch algorithm, therefore, is very suitable and easy 
to implement for a real P2P system.  

4.3 File Diversity 

In this section, we discuss and show that the proposed 
AntSearch algorithm has the same ability to search the 
non-popular files as a flooding-based algorithm does. 

First the search region in the AntSearch algorithm is 
limited and bounded by that in a flooding-based algorithm 
under the same TTL constraint. If a file is needed by 
minorities or it is created recently, the AntSearch 
algorithm will realize this during the probe phase of the 
search algorithm. Recall that the probe phase is to flood 
probe queries to a small region (usually, three neighbors 
with TTL=2) for estimating the popularity of target files. 
After the probe phase finishes, the number of searched 
files, nk, in a probe table will be very small, so that the 
AntSearch algorithm selects a larger k value to find 
sufficient results. When k is chosen to a maximal value 
(1.0), all the neighbors are flooded for this query, and the 
search region is equivalent to that in a flooding-based 
algorithm. 

Unfortunately, even though using a flooding-based 
algorithm to search, paper [14] tells us that some queries 
still can not return results. They measured the traffic 
characteristics of the Gnutella network from multiple 
vantage points in the Planet Lab, and showed that average 
18% queries can not find results, and among two-third of 
which, there are results available in the network. The 
result implies that our AntSearch algorithm suffers from 
the same problem in a flooding-based algorithm. The 
paper [14] had proposed a hybrid search algorithm to 
increase search region for solving this problem, and we 
believe that our AntSearch algorithm can collaborate well 
with their solutions. 

5. Performance Evaluation 

In this section, we use three metrics to measure the 
performances of the AntSearch, DQ and DQ+ search 
algorithms. The simulation model is first described and 



IEICE TRANS. FUNDAMENTALS/COMMUN./ELECTRON./INF. & SYST., VOL. E85-A/B/C/D,  No. 1   JANUARY 2002 
7 

 

 

then our simulation results are presented. Our simulator is 
based on that used in [4], which runs on a real Gnutella 
network topology on February 2, 2005 [10], and simulates 
160,000 peers in this network. The average number of 
neighbors per peer is close to 24, and more detail 
information is provided in the technical report [11]. In the 
probe phase of the AntSearch algorithm, a query is 
propagated to random three neighbors with TTL=2, and in 
our experiments the default maximum TTL value is 4 
seconds, and the timeout is set to 2.4 times TTL seconds. 
All the experimental setting is the same as that in [4]. 

During each simulation run, 1,000 different objects are 
located over 160,000 peers, and each object has 1,600 
replicas in the P2P network. The placement policy of 
replicas follows the 80/20 distribution [2] to simulate a 
large number of free-riders existing in the P2P file-sharing 
system. Average 20% peers contain the 80% replicas, and 
the other 20% replicas are randomly located in the rest 
80% peers. All the queries are uniformly distributed to the 
network (randomly choosing a peer without the searched 
file as the source peer to issue a query), and each query 
aims to retrieve 100 results (N=100). In formula (1) of 
pheromone value, the parameter α is set to 0.7. According 
to our extensive experiments, the parameter α does not 
significantly affect the performance of the AntSearch 
algorithm when it is set between 0.3 and 0.8. 

The evaluation metrics used in our experiments include 
the followings. (i) Number of searched files: for a query 
with a required number of results, N, a good search 
algorithm should retrieve the number of results over but 
close to N. (ii) Per result cost: we define the per result cost 
as the total amount of query messages divided by the 
number of searched results. This metric measures how 
many average query messages generated to gain a result. 

 
(iii) Search latency: the search latency is defined as total 
time for the query process. 

Fig. 6 shows the number of searched results in the 
Dynamic Querying (DQ), the enhanced version of 
Dynamic Querying (DQ+), and the AntSearch (DQ-Ants) 
algorithms at 100 simulation runs. It is clearly to observe 
that, the number of searched results in DQ is less than the 
required number of results (N=100), because the DQ 
search algorithm is designed to use a very conservative 
approach to flooding queries. On the other hand, the DQ+ 
and AntSearch algorithms always can retrieve the desired 
number of results. The most difference between them is 
that, the AntSearch sometimes retrieves a larger number of 
results than that in DQ+, and this overshooting problem is 
caused by the misestimate of search horizon, which means   
the actual number of searched peers is larger than the 
estimated one.  
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Fig. 7 depicts the total number of query messages 
generated in the three algorithms at 100 simulation runs. 
First, we can observe that the total number of query 
messages in the AntSearch algorithm is much smaller than 
those in the DQ and DQ+ algorithms. The total number of 
query messages in the AntSearch algorithm is around 
6,000, while those in the DQ and DQ+ algorithms are both 
approximately 12,000. In other words, the AntSearch 
algorithm average reduces 50% of query messages during 
a query. Recall that a query is propagated to all neighbors 
in the DQ and DQ+ algorithms, but it is only propagated 
to top k% of neighbors with higher pheromone values.  

Fig. 8 shows search latency in the three search 
algorithms at 100 simulation runs. Search latency is an 
important factor for the P2P file sharing system. We can 
observe that search latency in the DQ algorithm is longest, 
approximately 100 seconds at each simulation run. The 
DQ+ algorithm has the shortest search latency due to a 
greedy strategy applied in its iterative process. During 
each of iteration, the requester peer estimates to retrieve 
sufficient results from a selected neighbor. Besides, search 
latency in the AntSearch algorithm is a little higher but 
very close to that in the DQ+ algorithm, because a query is 
only propagated to top k% of neighbors with higher 
pheromone values, and in some cases the query needs 
more iterations to gain enough results.  

The overall performance comparison of the three 
search algorithms are listed in Figure 9. Averagely 
speaking, the per result cost (the number of query 
messages generated by a result) is about 105 in the DQ+, 
107 in the DQ, and 54 in the AntSearch algorithm. It is 
clearly that the AntSearch algorithm did reduce 
approximately 50% network traffic for a query, and search 
latency in it is a little longer than that in the DQ+ 
algorithm by 5 seconds.  

Figure 10 illustrates the performance metrics of the 
AntSearch, and DQ+ algorithms under different number of 
replicas. We can draw several conclusions by this result. 
First, the AntSearch algorithm always has smaller per 
result cost than that in the DQ+ algorithm under all 
different number of replicas. Second, search latency in the 
AntSearch algorithm is very similar to that in the DQ+ 
algorithm. Both of them produce short search latency. 
Third, for the number of searched results, the AntSearch 
algorithm can retrieve more results than the DQ+ 
algorithm does, especially when more replicas exist in the 
P2P system. According to these performance metrics, it is 
clearly that the AntSearch algorithm can reduce a large 
amount of network traffic at an acceptable cost of search 
latency, while receiving sufficient results for a query.  

6. Conclusions  

This paper was motivated by the need of a search 
algorithm for an unstructured P2P system that can provide 
better search performance in terms of network traffic cost 
and search latency. The main contribution of our work is 
that we propose a search algorithm, called ”AntSearch”, 
which can greatly reduce network traffic in a query by 
only sending queries to those peers which are not likely to 
be free-riders. By allowing for a small space cost (the 
pheromone values in each peer), our simulation results 
show that AntSearch substantially reduces network traffic 
which is caused by sending queries to the free-riders, and 
completes a query at almost the same search latency as 
DQ+ search algorithm. Most importantly, AntSearch is 
scalable, simple and easy to implement into a real system.  
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