
A Scalable Server Architecture for Mobile
Presence Services in Social Network

Applications
Chi-Jen Wu, Jan-Ming Ho, Member, IEEE, Ming-Syan Chen, Fellow, IEEE

Abstract—Social network applications are becoming increasingly popular on mobile devices. A mobile presence service is
an essential component of a social network application because it maintains each mobile user’s presence information, such
as the current status (online/offline), GPS location and network address, and also updates the user’s online friends with the
information continually. If presence updates occur frequently, the enormous number of messages distributed by presence servers
may lead to a scalability problem in a large-scale mobile presence service. To address the problem, we propose an efficient
and scalable server architecture, called PresenceCloud, which enables mobile presence services to support large-scale social
network applications. When a mobile user joins a network, PresenceCloud searches for the presence of his/her friends and
notifies them of his/her arrival. PresenceCloud organizes presence servers into a quorum-based server-to-server architecture
for efficient presence searching. It also leverages a directed search algorithm and a one-hop caching strategy to achieve small
constant search latency. We analyze the performance of PresenceCloud in terms of the search cost and search satisfaction level.
The search cost is defined as the total number of messages generated by the presence server when a user arrives; and search
satisfaction level is defined as the time it takes to search for the arriving user’s friend list. The results of simulations demonstrate
that PresenceCloud achieves performance gains in the search cost without compromising search satisfaction.

Index Terms—Social networks, mobile presence services, distributed presence servers, cloud computing.

F

1 INTRODUCTION

B ECAUSE of the ubiquity of the Internet, mobile de-
vices and cloud computing environments can pro-

vide presence-enabled applications, i.e., social network
applications/services, worldwide. Facebook [1], Twitter [2],
Foursquare [3], Google Latitude [4], buddycloud [5] and
Mobile Instant Messaging (MIM) [6], are examples of
presence-enabled applications that have grown rapidly in
the last decade. Social network services are changing the
ways in which participants engage with their friends on
the Internet. They exploit the information about the status
of participants including their appearances and activities
to interact with their friends. Moreover, because of the
wide availability of mobile devices (e.g., Smartphones) that
utilize wireless mobile network technologies, social net-
work services enable participants to share live experiences
instantly across great distances. For example, Facebook
receives more than 25 billion shared items every month

• Chi-Jen Wu is with the Department of Electrical Engineering, National
Taiwan University, Taiwan and also with the Institute of Information
Science, Academia Sinica, Taiwan.
E-mail: cjwu@iis.sinica.edu.tw

• Dr. Jan-Ming Ho is with the Institute of Information Science, Academia
Sinica, Taiwan.
E-mail: hoho@iis.sinica.edu.tw

• Dr. Ming-Syan Chen is with the Research Center of Information
Technology Innovation, Academia Sinica, Taiwan and also with the
Department of Electrical Engineering, National Taiwan University,
Taiwan.
E-mail: mschen@citi.sinica.edu.tw

and Twitter receives more than 55 million tweets each day.
In the future, mobile devices will become more powerful,
sensing and media capture devices. Hence, we believe it
is inevitable that social network services will be the next
generation of mobile Internet applications.

A mobile presence service is an essential component
of social network services in cloud computing environ-
ments. The key function of a mobile presence service is
to maintain an up-to-date list of presence information of
all mobile users. The presence information includes details
about a mobile user’s location, availability, activity, device
capability, and preferences. The service must also bind
the user’s ID to his/her current presence information, as
well as retrieve and subscribe to changes in the presence
information of the user’s friends. In social network services,
each mobile user has a friend list, typically called a buddy
list, which contains the contact information of other users
that he/she wants to communicate with. The mobile user’s
status is broadcast automatically to each person on the
buddy list whenever he/she transits from one status to the
other. For example, when a mobile user logs into a social
network application, such as an IM system, through his/her
mobile device, the mobile presence service searches for and
notifies everyone on the user’s buddy list. To maximize
a mobile presence service’s search speed and minimize
the notification time, most presence services use server
cluster technology [7]. Currently, more than 500 million
people use social network services on the Internet [1].
Given the growth of social network applications and mobile
network capacity, it is expected that the number of mobile

IEEE TRANSACTIONS ON MOBILE COMPUTING YEAR 2013

presence service users will increase substantially in the near
future. Thus, a scalable mobile presence service is deemed
essential for future Internet applications.

In the last decade, many Internet services have been
deployed in distributed paradigms as well as cloud com-
puting applications. For example, the services developed by
Google and Facebook are spread among as many distributed
servers as possible to support the huge number of users
worldwide. Thus, we explore the relationship between dis-
tributed presence servers and server network topologies on
the Internet, and propose an efficient and scalable server-to-
server overlay architecture called PresenceCloud to improve
the efficiency of mobile presence services for large-scale
social network services.

First, we examine the server architectures of existing
presence services, and introduce the buddy-list search
problem in distributed presence architectures in large-scale
geographically data centers. The buddy-list search problem
is a scalability problem that occurs when a distributed
presence service is overloaded with buddy search messages.

Then, we discuss the design of PresenceCloud, a scalable
server-to-server architecture that can be used as a building
block for mobile presence services. The rationale behind
the design of PresenceCloud is to distribute the information
of millions of users among thousands of presence servers
on the Internet. To avoid single point of failure, no sin-
gle presence server is supposed to maintain service-wide
global information about all users. PresenceCloud organizes
presence servers into a quorum-based server-to-server ar-
chitecture to facilitate efficient buddy list searching. It also
leverages the server overlay and a directed buddy search
algorithm to achieve small constant search latency; and em-
ploys an active caching strategy that substantially reduces
the number of messages generated by each search for a
list of buddies. We analyze the performance complexity of
PresenceCloud and two other architectures, a Mesh-based
scheme and a Distributed Hash Table (DHT)-based scheme.
Through simulations, we also compare the performance of
the three approaches in terms of the number of messages
generated and the search satisfaction which we use to
denote the search response time and the buddy notification
time. The results demonstrate that PresenceCloud achieves
major performance gains in terms of reducing the number
of messages without sacrificing search satisfaction. Thus,
PresenceCloud can support a large-scale social network
service distributed among thousands of servers on the
Internet.

The contribution of this paper is threefold. First, Pres-
enceCloud is among the pioneering architecture for mobile
presence services. To the best of our knowledge, this is
the first work that explicitly designs a presence server
architecture that significantly outperforms those based dis-
tributed hash tables. PresenceCloud can also be utilized by
Internet social network applications and services that need
to replicate or search for mutable and dynamic data among
distributed presence servers. The second contribution is that
we analyze the scalability problems of distributed presence
server architectures, and define a new problem called the

buddy-list search problem. Through our mathematical for-
mulation, the scalability problem in the distributed server
architectures of mobile presence services is analyzed. Fi-
nally, we analyze the performance complexity of Presence-
Cloud and different designs of distributed architectures, and
evaluate them empirically to demonstrate the advantages of
PresenceCloud.

The remainder of this paper is organized as follows.
The next section contains a review of related works. In
Section 3, we consider the buddy-list search problem in a
distributed presence server architecture; and in Section 4,
we describe the design of PresenceCloud in detail. The
complexity analyses of PresenceCloud, the mesh-based
scheme and the DHT-based scheme are presented in Sec-
tion 5; and the performance results of the three approaches
are detailed in Section 6. In Sections 7, we discuss perfor-
mance issues related to PresenceCloud. Section 8 contains
some concluding remarks.

2 RELATED WORK

In this section, we describe previous researches on pres-
ence services, and survey the presence service of existing
systems. Well known commercial IM systems leverage
some form of centralized clusters to provide presence
services [7]. Jennings III et al. [7] presented a taxonomy of
different features and functions supported by the three most
popular IM systems, AIM, Microsoft MSN and Yahoo!
Messenger. The authors also provided an overview of the
system architectures and observed that the systems use
client-server-based architectures. Skype, a popular voice
over IP application, utilizes the Global Index (GI) tech-
nology [8] to provide a presence service for users. GI
is a multi-tiered network architecture where each node
maintains full knowledge of all available users. Since Skype
is not an open protocol, it is difficult to determine how
GI technology is used exactly. Moreover, Xiao et al. [9]
analyzed the traffic of MSN and AIM system. They found
that the presence information is one of most messaging
traffic in instant messaging systems. In [10], authors shown
that the largest message traffic in existing presence services
is buddy NOTIFY messages.

Several IETF charters [11]–[13] have addressed closely
related topics and many RFC documents on instant
messaging and presence services have been published,
e.g.,XMPP [14], SIMPLE [15]. Jabber [16] is a well-known
deployment of instant messaging technologies based on
distributed architectures. It captures the distributed archi-
tecture of SMTP protocols. Since Jabber’s architecture is
distributed, the result is a flexible network of servers that
can be scaled much higher than the monolithic, centralized
presence services. Recently, there is an increase amount
of interest in how to design a peer-to-peer SIP [17]. P2P-
SIP [18] has been proposed to remove the centralized
server, reduce maintenance costs, and prevent failures in
server-based SIP deployment. To maintain presence infor-
mation, P2PSIP clients are organized in a DHT system,
rather than in a centralized server. However, the presence

service architectures of Jabber and P2PSIP are distributed,
the buddy-list search problem we defined later also could
affect such distributed systems.

It is noted that few articles in [19]–[21] discuss the scal-
ability issues of the distributed presence server architecture.
Saint Andre [19] analyzes the traffic generated as a result of
presence information between users of inter-domains that
support the XMPP. Houri et al. [20] show that the amount
of presence traffic in SIMPLE [13] can be extremely heavy,
and they analyze the effect of a large presence system on the
memory and CPU loading. Those works in [21], [22] study
related problems and developing an initial set of guidelines
for optimizing inter-domain presence traffic and present a
DHT-based presence server architecture.

Recently, presence services are also integrated into mo-
bile services. For example, 3GPP has defined the integration
of presence service into its specification in UMTS. It
is based on SIP [23] protocol, and uses SIMPLE [15]
to manage presence information. Recently, some mobile
devices also support mobile presence services. For example,
the Instant Messaging and Presence Services (IMPS) was
developed by the Wireless Village consortium and was
united into Open Mobile Alliance (OMA) IMPS [24] in
2005. In [25], Chen et al. proposed a weakly consistent
scheme to reduce the number of updating messages in
mobile presence services of IP Multimedia Subsystem
(IMS). However, it also suffers scalability problem since
it uses a central SIP server to perform presence update
of mobile users [26]. In [27], authors presented the server
scalability and distributed management issues in IMS-based
presence service.

3 THE PROBLEM STATEMENT
In this section, we describe the system model, and the
buddy-list search problem. Formally, we assume the ge-
ographically distributed presence servers to form a server-
to-server overlay network, G = (V,E), where V is the
set of the Presence Server (PS) nodes, and E is a col-
lection of ordered pairs of V . Each PS node ni ∈ V
represents a Presence Server and an element of E is a
pair (ni, nj) ∈ E with ni, nj ∈ V . Because the pair is
ordered, (nj , ni) ∈ E is not equivalent to (ni, nj) ∈ E.
So, the edge (ni, nj) is called an outgoing edge of ni, and
an incoming edge of nj . The server overlay enables its
PS nodes to communicate with one another by forwarding
messages through other PS nodes in the server overlay.
Also, we denote a set of the mobile users in a presence
service as U = {u1, . . . , ui, . . . , um}, where 1 ≤ i ≤ m
and m is the number of mobile users. A mobile user ui

connects with one PS node for search other user’s presence
information, and to notify the other mobile users of his/her
arrival. Moreover, we define a buddy list as following.

Definition 1. Buddy list, Bi = {b1, b2, . . . , bk} of user
ui ∈ U , is defined as a subset of U , where 0 < k ≤
|U |. Furthermore, B is a symmetric relation, i.e, ui ∈ Bj

implies uj ∈ Bi.
For example, given a mobile user up is in the buddy

list of a mobile user uq, the mobile user uq also appear in

the buddy list of the mobile user up. Note that to simplify
the analysis of the Buddy-List Search Problem, we assume
that buddy relation is a symmetric. However, in the design
of PresenceCloud, the relation of buddies can be unilateral
because the search operation of PresenceCloud can retrieve
the presence of a mobile user by given the ID of the mobile
user.

Problem Statement: Buddy-List Search Problem
When a mobile user ui changes his/her presence status,

the mobile presence service searches presence information
of mobile users in buddy list Bi of ui and notifies each
of them of the presence of ui and also notifies ui of
these online buddies. The Buddy-List Search Problem is
then defined as designing a server architecture of mobile
presence service such that the costs of searching and
notification in communication and storage are minimized.

3.1 Analysis of a Naive Architecture of Mobile
Presence Service:
In the following, we will give an analysis of the expected
rate of messages generated to search for buddies of newly
arrived user in a naive architecture of mobile presence
services. We assume that each mobile user can join and
leave the presence service arbitrarily, and each PS node only
knows those mobile users directly attached to it. We also
assume the probability for a mobile user to attach to a PS
node to be uniform. Let’s denote λ the average arriving rate
of mobile users in a mobile presence service. In this paper,
we focus on architecture design of mobile presence services
and leave the problem of designing the capacity of presence
servers as a separate research issue. Thus, we assume each
PS node to have infinite service capacity. Hence, µ = λ

n
is the average rate of mobile users attaching to a PS node,
where n is denoted the number of PS nodes in a mobile
presence service. Let h denote the probability of having all
users in the buddy list of ui to be attaching to the same PS
node as ui. It is the probability of having no need to send
search messages when ui attaches to a PS node. Thus,

h =
∏
|Bi|

1

n
= n−|Bi|.

The expected number of search messages generated by
this PS node per unit time is then

(n− 1)× (1− h)× µ.

For a reasonable size of set Bi (e.g., |Bi| ≥ 3) and
n ≥ 100, we consider the expected number Q of messages
generated by the n PS nodes per unit time, then we have

Q = n× (n− 1)× (1− h)× µ

= n× (n− 1)× (1− h)× λ

n
≃ (n− 1)× λ.

Thus, as the number of PS nodes increase, both the
total communication and the total CPU processing overhead
of presence servers also increase. It also shows that λ is
another important parameter having impact on the system

2048 4096 8192 16384
0.0

5.0M

10.0M

15.0M

20.0M

25.0M

Logarithmic ScaleEx
pe

ct
ed

 n
um

be
r o

f p
re

se
nc

e
m

es
sa

ge
s

per second arrival rate
(a) The average arrival rate of mobile users increases from 2,000 to
21,000 per second in a 1,000 PS nodes mobile presence system

64 128 256 512 1024

0.0

5.0M

10.0M

15.0M

20.0M

25.0M

30.0M

35.0M

Logarithmic ScaleEx
pe

ct
ed

 n
um

be
r o

f
pr

es
en

ce
 m

es
sa

ge
s

Number of presence servers

(b) The number of PS nodes increases from 100 to 1,700 in a mobile
presence service with 20,000 per second arrival rate of mobile users

Fig. 1. The analysis of expected total transmissions when searching for buddy lists in a distributed mobile
presence service (The x axis of both sub figures is in logarithmic scale)

overhead. When λ increases substantially, it has a major
impact on the system overhead. However, a scalable pres-
ence system should be able to support more than 20,000
mobile user logins per second in burst cases as reported
by [28].

In Fig. 1, we plot statistics for all expected queries
transmitted in a mobile presence service to show the
increase in number of buddy search messages as lambda
increases. Fig. 1(a) shows that in a 1,000 PS nodes system,
and the average arrival rate of mobile users increases from
2,000 to 21,000. From the results of analysis, the number
of buddy searching messages increases with increasing
average arrival rate of mobile users. Fig. 1(b) plots another
scenario, the average arrival rate of user joining is 20,000
per second, and the number of PS nodes in a system
increases from 100 to 1,700. It shows that the number of
total buddy searching messages increases significantly with
the number of PS nodes.

Collectively, we refer to the above phenomena as the
buddy-list search problem, and any distributed presence
server architectures could inevitably suffer from this scal-
ability problem. The analysis shows that the buddy list
searching operation of mobile presence services is costly
and should be designed with caution.

4 DESIGN OF PRESENCECLOUD
The past few years has seen a veritable frenzy of research
activity in Internet-scale object searching field, with many
designed protocols and proposed algorithms. Most of the
previous algorithms are used to address the fixed object
searching problem in distributed systems for different in-
tentions. However, people are nomadic, the mobile presence
information is more mutable and dynamic; a new design of
mobile presence services is needed to address the buddy-
list search problem, especially for the demand of mobile
social network applications.

PresenceCloud is used to construct and maintain a dis-
tributed server architecture and can be used to efficiently

query the system for buddy list searches. PresenceCloud
consists of three main components that are run across a set
of presence servers. In the design of PresenceCloud, we re-
fine the ideas of P2P systems and present a particular design
for mobile presence services. The three key components of
PresenceCloud are summarized below:

• PresenceCloud server overlay organizes presence
servers based on the concept of grid quorum sys-
tem [29]. So, the server overlay of PresenceCloud
has a balanced load property and a two-hop diameter
with O(

√
n) node degrees, where n is the number of

presence servers.
• One-hop caching strategy is used to reduce the

number of transmitted messages and accelerate query
speed. All presence servers maintain caches for the
buddies offered by their immediate neighbors.

• Directed buddy search is based on the directed search
strategy. PresenceCloud ensures an one-hop search, it
yields a small constant search latency on average.

4.1 PresenceCloud Overview

The primary abstraction exported by our PresenceCloud is
used to construct a scalable server architecture for mobile
presence services, and can be used to efficiently search the
desired buddy lists. We illustrated a simple overview of
PresenceCloud in Fig. 2. In the mobile Internet, a mobile
user can access the Internet and make a data connection to
PresenceCloud via 3G or Wifi services. After the mobile
user joins and authenticates himself/herself to the mobile
presence service, the mobile user is determinately directed
to one of Presence Servers in the PresenceCloud by using
the Secure Hash Algorithm, such as SHA-1 [30]. The
mobile user opens a TCP connection to the Presence Server
(PS node) for control message transmission, particularly
for the presence information. After the control channel
is established, the mobile user sends a request to the
connected PS node for his/her buddy list searching. Our

Fig. 2. An overview of PresenceCloud

PresenceCloud shall do an efficient searching operation and
return the presence information of the desired buddies to
the mobile user. Now, we discuss the three components of
PresenceCloud in detail below.

4.2 PresenceCloud Server Overlay
The PresenceCloud server overlay construction algorithm
organizes the PS nodes into a server-to-server overlay,
which provides a good low-diameter overlay property.
The low-diameter property ensures that a PS node only
needs two hops to reach any other PS nodes. The detailed
description is as follows.

Our PresenceCloud is based on the concept of grid
quorum system [29], where a PS node only maintains a
set of PS nodes of size O(

√
n), where n is the number of

PS nodes in mobile presence services. In a PresenceCloud
system, each PS node has a set of PS nodes, called PS list,
that constructed by using a grid quorum system, shown in
Fig. 3 for n=9. The size of a grid quorum is ⌈

√
n⌉×⌈

√
n⌉.

When a PS node joins the server overlay of PresenceCloud,
it gets an ID in the grid, locates its position in the grid
and obtains its PS list by contacting a root server1. On the
⌈
√
n⌉ × ⌈

√
n⌉ grid, a PS node with a grid ID can pick

one column and one row of entries and these entries will
become its PS list in a PresenceCloud server overlay. Fig. 3
illustrates an example of PresenceCloud, in which the grid
quorum is set to ⌈

√
9⌉ × ⌈

√
9⌉. In the Fig. 3, the PS node

8 has a PS list {2,5,7,9} and the PS node 3 has a PS list
{1,2,6,9}. Thus, the PS node 3 and 8 can construct their
overly networks according to their PS lists respectively.

We now show that each PS node in a PresenceCloud
system only maintains the PS list of size O(

√
n), and

the construction of PresenceCloud using the grid quorum
results in each PS node can reach any PS node at most two
hops.

Lemma 1: The server overlay construction algorithm of
PresenceCloud guarantees that each presence server only

1. The root server may become a scalability problem in a very large
scale PresenceCloud, ex, a million PS nodes. However, it also can be
extended to work with distributed root servers, such as the KAD system
in BitTorrent [31].

Fig. 3. A perspective of PresenceCloud Server Overlay

maintains a presence server list of size O(
√
n), where n is

the number of presence servers.
Proof: We consider a grid quorum system of ⌈

√
n⌉ ×

⌈
√
n⌉ and arrange elements of the global set G =

{1, 2, . . . , n} as a ⌈
√
n⌉× ⌈

√
n⌉ array. For each grid point

i has a quorum set, Si that contains a full column plus a
full row of elements in the array. Then it is clear that for
any grid point i in a grid quorum system, the size of |Si|
is equal to 2⌈

√
n⌉ − 1. Therefore, for any PS node in a

PresenceCloud, the size of a PS list maintained at a PS
node is O(

√
n).

Lemma 2: Each presence server in a PresenceCloud
server overlay can reach any other presence servers in a
two hops route.

Proof: In a grid quorum system of ⌈
√
n⌉× ⌈

√
n⌉, for

each grid point i has a quorum set, Si that contains a full
column plus a full row of elements in the array. It is clear
that Si∩Sj ̸= null for any grid point i and j, 1 ≤ i, j ≤ n.
Let K be the some grid points in Si ∩ Sj . Thus, for any
grid point, j /∈ Si, the grid point i can reach j by passing
one of grid points, l ∈ K set. Then it is clear that for any
PS node i in a PresenceCloud, can reach any other PS node
in a two hops route.

Here, we give an example for Lemma 2. In Fig. 3, the
PS list of PS node 1 is the set {2, 3, 4, 7} and one of
PS node 8 is the set {2, 5, 7, 9}. PS node 8 can reach
PS node 1 by K set {2, 7}, i.g., a route 8 → 2 → 1 or
8→ 7→ 1. Note that K set is the intersection set of two
PS lists Consequently, PresenceCloud can hold the two-hop
diameter property based on a grid quorum system.

4.2.1 Stabilization of Incomplete Quorum Systems
Our algorithm is fault tolerance design. At each PS node, a
simple Stabilization() process periodically contacts exist-
ing PS nodes to maintain the PS list. The Stabilization()
process is elaborately presented in the Algorithm 1. When
a PS node joins, it obtains its PS list by contacting a root.
However, if a PS node n detects failed PS nodes in its PS
list, it needs to establish new connections with existing PS
nodes. In our algorithm, n should pick a random PS node
that is in the same column or row as the failed PS node.

Algorithm 1 PresenceCloud Stabilization algorithm
1: /* periodically verify PS node n’s pslist */
2: Definition:
3: pslist: set of the current PS list of this PS node, n
4: pslist[].connection: the current PS node in pslist
5: pslist[].id: identifier of the correct connection in pslist
6: node.id: identifier of PS node node
7: Algorithm:
8: r ← Sizeof(pslist)
9: for i = 1 to r do

10: node ← pslist[i].connection
11: if node.id ̸= pslist[i].id then
12: /* ask node to refresh n’s PS list entries */
13: findnode ← Find CorrectPSNode(node)
14: if findnode = nil then
15: pslist[i].connection ← RandomNode(node)
16: else
17: pslist[i].connection ← findnode
18: end if
19: else
20: /* send a heartbeat message */
21: bfailed ← SendHeartbeatmsg(node)
22: if bfailed = true then
23: pslist[i].connection ← RandomNode(node)
24: end if
25: end if
26: end for

In Algorithm 1, the function Find CorrectPSNode() re-
turns the correct PS list entry, i.e., findnode.id is equal to
pslist[i].id. Moreover, it is an easy implemented function
based on Lemma 2. The function RandomNode(node) is
designed to pick a random PS node that is in the same
column or row as the failed PS node, node. This function
can retrieve substituted nodes by asking the existing PS
node in PS list.

In our design, we define pslist[i].id as the id
of the ith logical neighbor of a PS node p, while
pslist[i].connection.id as the id of the physical PS node
that handles presence information for the ith logical
neighbor of p. In other words, if the PS node with
ID = pslist[i].id does not exist on the overlay, then
the Stabilization algorithm will assign the PS node with
ID=pslist[i].connection.id to take its place.

For example, in Fig. 3, we let PS node 8 be the node
running the Stabilization algorithm. In general, in PS node
8, the values of pslist[].id should be {2, 5, 7, 9} and the
values of pslist[].connection should be {node 2, node 5,
node 7, node 9}. If the PS node 2 is failed then PS node
8 can choose node 1 or node 3 to take over PS node 2
after running the Stabilization algorithm. Clearly, several
attractive features of our algorithm are that it is simple to
implement, is naturally robust to failures, and is with a
two-hop diameter property.

The heart beat messages overhead is another performance
factor in distributed server overlays. Anyone distributed
server overlay architecture requires heart beat message to

maintain the connectivity of each server for recovering
system from server failure. However, in order to reduce
the maintenance overhead, PresenceCloud piggybacks the
heart beat message in buddy search messages for saving
transmission costs.

The following result quantifies the robustness of the
PresenceCloud protocol.

Lemma 3: if a presence server uses a PS list of size r in
a PresenceCloud that is initially stable, and if every pres-
ence server fails with probability 1

2 , then the Stabilization
algorithm sustains the PS list with high probability.

Proof: Before any nodes fail, a node was aware of
its r immediate presence servers. The probability that all
of these presence servers fail is (12)r, thus every presence
server is aware of these presence servers in its PS list with
high probability. As was implied by Lemma 2, if the current
node n starts stabilization procedure and if the correct PS
node p exists, then node n retrieves p in one hop query.
Therefore, the Stabilization algorithm can sustain the PS
list by asking these immediate presence servers.

Then, we describe a mobile user join procedure. When
a mobile user joins a PresenceCloud, he/she uses a hash
function, such as Secure Hash Algorithm (SHA-1) [30],
to hash his/her identifier in the mobile presence service to
get a grid ID in the grid quorum. PresenceCloud assigns
mobile users to PS nodes with a hash function, e.g., SHA-
1 algorithm such that, with a high probability, the hash
function balances loads uniformly [32] and thus all PS
nodes receive roughly the same number of mobile users.

So that the mobile user can decide that he/she has to
associate with the specific PS node, q with the hashed
grid ID. Note that PresenceCloud uses overlay network
architecture. In other words, although the mobile user
knows ID of the PS node q, it does not have IP address
of q. In order to obtain IP address of q, the mobile user
first hashes his/her identifier into the grid ID of the specific
PS node q.

Then the mobile user contacts randomly with a of PS
node, p redirect he/she to the specific PS node, q. Note
that PresenceCloud does not require a centralized server to
response the IP address lookup of PS nodes for every user
joining. However, if the specific PS node q does not exist,
the contacted PS node p can redirect the mobile user to
those PS nodes that are in the same row as the PS node q.
For example, in Fig. 3, a mobile user obtains a grid ID 6 by
hashing its identifier in the mobile presence service, then
he/she randomly contacts with PS node 2. And PS node 2
should redirect the mobile user to PS node 6. If PS node 6
is not existing, then PS node 2 should redirect the mobile
user to PS node 4 or 5.

4.3 One-hop Caching

To improve the efficiency of the search operation, Pres-
enceCloud requires a caching strategy to replicate pres-
ence information of users. In order to adapt to changes
in the presence of users, the caching strategy should be
asynchronous and not require expensive mechanisms for

distributed agreement. In PresenceCloud, each PS node
maintains a user list of presence information of the attached
users, and it is responsible for caching the user list of each
node in its PS list, in other words, PS nodes only replicate
the user list at most one hop away from itself. The cache
is updated when neighbors establish connections to it, and
periodically updated with its neighbors. Therefore, when
a PS node receives a query, it can respond not only with
matches from its own user list, but also provide matches
from its caches that are the user lists offered by all of its
neighbors.

Our caching strategy does not require expensive overhead
for presence consistency among PS nodes. When a mobile
user changes its presence information, either because it
leaves PresenceCloud, or due to failure, the responded PS
node can disseminate its new presence to other neighboring
PS nodes for getting updated quickly. Consequently, this
one-hop caching strategy ensures that the user’s presence
information could remain mostly up-to-date and consistent
throughout the session time of the user.

More specifically, it should be easy to see that, each PS
node maintains roughly 2(⌈

√
n⌉−1)×u replicas of presence

information, due to each PS node replicates its user list
at most one hop away from itself. Here, u is denoted the
average number of mobile users in a PS node. Therefor, we
have the following lemma.

Lemma 4: Each presence server in PresenceCloud only
maintains the one-hop replicas of presence information of
size O(u ×

√
n), where u is denoted the average number

of mobile users in a presence server and n is the number
of presence servers.

By maintaining O(u×
√
n) replicas of presence informa-

tion at each PS node and the simple two-hop overlay design,
PresenceCloud has sufficient redundancy to provide a good
level of buddy searching service. Furthermore, this caching
mechanism can significantly reduce the communication cost
during searching operation. In the next section, an analysis
studies will reveal that the one-hop caching mechanism
brings PresenceCloud great improvement in buddy search-
ing cost.

4.4 Directed Buddy Search

We contend that minimizing searching response time is
important to mobile presence services. Thus, the buddy
list searching algorithm of PresenceCloud coupled with
the two-hop overlay and one-hop caching strategy ensures
that PresenceCloud can typically provide swift responses
for a large number of mobile users. First, by organizing
PS nodes in a server-to-server overlay network, we can
therefore use one-hop search exactly for queries and thus
reduce the network traffic without significant impact on the
search results. Second, by capitalizing the one-hop caching
that maintains the user lists of its neighbors, we improve
response time by increasing the chances of finding buddies.
Clearly, this mechanism both reduces the network traffic
and response time. Based on the mechanism, the population
of mobile users can be retrieved by a broadcasting operation

Fig. 4. An example of buddy list searching operations
in PresenceCloud

in any PS node in the mobile presence service. Moreover,
the broadcasting message can be piggybacked in a buddy
search message for saving the cost.

As previously mentioned, PresenceCloud does not re-
quire a complex searching algorithm, the directed searching
technique can improve search efficiency. Thus, we have the
following lemma.

Lemma 5: For each buddy list searching operation, the
directed buddy search of PresenceCloud retrieves the pres-
ence information Φ of the queried buddy list at most one-
hop.

Proof: This is a direct consequence of Lemma 2 and
Lemma 3.

Before presenting the directed buddy search algorithm,
lets revisit some terminologies which will be used in the
algorithm.
B = {b1, b2, . . . , bk}: set of identifiers of user’s buddies
B(i): Buddy List Search Message be sent to PS node i
b(i): set of buddies that shared the same grid ID i
Sj : set of pslist[].id of PS node j
Directed Buddy Search Algorithm:

1) A mobile user logins PresenceCloud and decides the
associated PS node, q.

2) The user sends a Buddy List Search Message, B to
the PS node q.

3) When the PS node q receives a B, then retrieves each
bi from B and searches its user list and one-hop cache
to respond to the coming query. And removes the
responded buddies from B.

4) If B = nil, the buddy list search operation is done.
5) Otherwise, if B ̸= nil, the PS node q should hash

each remaining identifier in B to obtain a grid ID,
respectively.

6) Then the PS node q aggregates these b(g) to become
a new B(j), for each g ∈ Sj . Here PS node j is the
intersection node of Sq∩Sg. And sends the new B(j)

to PS node j.
Following, we describe an example of directed buddy

search in PresenceCloud. When a PS node 4 receives a
Buddy List Search Message, B = {1, 2, 3, 4, 5, 6, 7, 8, 9},
from a mobile user, PS node 4 first searches its local
user list and the buddy cache, and then it responds these

searched buddies to the mobile user and removes these
searched buddies from B. In Fig. 4, these removed buddies
include the user lists of PS node {1,4,5,6,7}. Then PS
node 4 can aggregates b(3) and b(9) to become a new
B(6) and sends the new B(6) to PS node 6. Note that
the pslist[].id of PS node 6 is {3,4,5,9}. Here, PS node
4 also aggregates b(2) and b(8) to become a new B(5) and
sends the new B(5) to PS node 5. However, due to the
one-hop caching strategy, PS node 6 has a buddy cache
that contains these user lists of PS node {3,9}, PS node
6 can expeditiously respond the buddy search message
B(6). Consequently, the directed searching combined with
both previous two mechanisms, including PresenceCloud
server overlay and one-hop caching strategy, can reduce
the number of searching messages sent.

5 COST ANALYSIS

In this section, we provide a cost analysis of the com-
munication cost of PresenceCloud in terms of the number
of messages required to search the buddy information of
a mobile user. Note that how to reduce the number of
inter-server communication messages is the most important
metric in mobile presence service issues. The buddy-list
search problem can be solved by a brute-force search
algorithm, which simply searches all the PS nodes in the
mobile presence service. In a simple mesh-based design,
the algorithm replicates all the presence information at each
PS node; hence its search cost, denote by QMesh, is only
one message. On the other hand, the system needs n − 1
messages to replicate a user’s presence information to all PS
nodes, where n is the number of PS nodes. The communica-
tion cost of searching buddies and replicating presence in-
formation can be formulated as Mcost = QMesh +RMesh,
where RMesh is the communication cost of replicating
presence information to all PS nodes. Accordingly, we have
Mcost =O(n).

In the analysis of PresenceCloud, we assume that the
mobile users are distributed equally among all the PS
nodes, which is the worst case of the performance of
PresenceCloud. Here, the search cost of PresenceCloud
is denoted as Qp, which is 2 × (⌈

√
n⌉ − 1) messages

for both searching buddy lists and replicating presence
information. Because search message and replica message
can be combined into one single message, the communi-
cation cost of replicating, Rp = 0. It is straightforward
to know that the communication cost of searching buddies
and replicating presence information in PresenceCloud is
Pcost = Qp = 2×(⌈

√
n⌉−1). However, in PresenceCloud,

a PS node not only searches a buddy list and replicates
presence information, but also notifies users in the buddy
list about the new presence event. Let b be the maximum
number of buddies of a mobile user. Thus, the worst case is
when none of the buddies are registered with the PS nodes
reached by the search messages and each user on the buddy
list is located on different PS nodes. Since PresenceCloud
must reply every online user on the buddy list individually,
it is clear that extra b messages must be transmitted. In the

0.00 250.00k 500.00k 750.00k 1.00M 1.25M

0

2000

4000

6000

8000

10000

12000

14000

16000

A
ve

ra
ge

 s
ea

rc
hi

ng
 m

es
sa

ge
s/

us
er

Number of Presence servers

 PresenceCloud Chord (b=200)
 Chord (b=400) Chord (b=600)

Fig. 5. Average searching messages vs. very large
number of PS nodes

worst case, it needs other 2× (⌈
√
n⌉− 1) messages (when

b >> 2(⌈
√
n⌉− 1)). When all mobile users are distributed

equally among the PS nodes, which is considered to be the
worst case, the Pcost = 4× (⌈

√
n⌉ − 1). Consequently, we

have the following lemma.
Lemma 6: For each buddy searching operation in Pres-

enceCloud, the maximum communication cost of the buddy
list search problem is O(

√
n), where n is the number of

presence servers.
Next, we discuss the search cost of the DHT-based

presence architecture. We make the following assumptions
to simplify the analysis: 1) the presence information of
a mobile user is only stored in one PS node (i.e. no
replication). Note that in some DHT systems, replicating
data increases both the node workload and the maintenance
complexity. 2) all mobile users are uniformly distributed
in all PS nodes. Although our analysis is based on the
Chord [33], it can be extended to other DHTs. Let n be
the total number of PS nodes in a Chord. Chord nodes
maintains logn neighbors, i.e., finger table, to provide a
O(logn) lookup operations. However, the lookup operation
in DHT systems is based on exact-matching, each buddy
must be searched one by one, the total search complexity
of DHT is equal to Dcost = O(b × log n). Note that some
replica algorithms [34] are proposed for DHT systems, but
these algorithms also increase the complexity of DHT.

Example. We Consider the following simple example
to illustrate the efficiency of PresenceCloud. Assume that
there are 1024 (n=1024) PS nodes in PresenceCloud and
the maximum number of buddies is 100 (b=100). When
a mobile user queries, the expected value of the num-
ber of messages which a PS node involves is less than
(4×(⌈

√
1024⌉ - 1)) = 124. It means that our PresenceCloud

saves (124/1023) = 88% communication cost over the
mesh-based approach. Then, we also have an example of
DHT-based presence system, we assume that there are
1024 PS nodes in the DHT-based presence system and the
maximum number of buddies is 100. The maximum number
of messages which a PS node involves is (100× log2 1024)

TABLE 1
Presence Architecture Comparison

Mesh PresenceCloud DHT-based
Search O(n) O(

√
n) O(b× logn)

Replicas O(|U |) O(
√
n× u) O(u)

Latency one hop two hops logn hops
Message Size b b/n b/n

Message Reply Hops O(1) O(1) O(logn)
Maintenance Overhead O(n) O(

√
n) O(log n)

= 1000 per user querying operation in the worst case (each
buddy of the user is attached to different PS nodes).

Fig. 5 plots the average number of searching messages
per searching operation in various very larger number of
PS nodes, where b is the number of buddy sizes. As
expected, the average message transmissions of Chord-
based design increases with the buddy size. The reason
is that based on the traditional DHT protocol, each buddy
should be treated as a key by hash functions for routing
operation in most of DHTs. And it also needs at most b
messages for reporting the searching results to the source
PS node. We can see that in the case (b=200), when
the number of PS nodes grows, PresenceCloud performs
better performance under one million PS nodes than Chord-
based. However, PersenceCloud outperforms than Chord-
based approach when the buddy size grows larger. Note that
mesh architecture generates much more searching messages
per user than the other architectures. It is thus difficult to
put the comparisons in a single figure.

We summarize the comparison of different schemes in
Table 1. The columns show the different schemes. The label
”Search” means the maximum number of messages sent
by a PS node when a mobile user joins; label ”Replica”
means the maximum number of buddy replicas in a PS
node. label ”Latency” means the buddy search latency, we
quantify this metric by the diameter of the server overlay.
This is reasonable because, in general, the search latency is
dominated by the diameter of the overlay. label ”Message
Size” means the average number of required buddy in
a message. label ”Message Reply Hops” means that the
maximum hop counts of a message relayed by PS nodes.
label ”Maintenance Overhead” means the number of PS
nodes maintained by a PS node. In Table 1, none of
the schemes is a clear winner. The mesh-based approach
achieves good search latency at the expense of the other
metrics. Our PresenceCloud yields a low communication
cost in large-scale server architecture and small search
latency. Note that u is denoted the average number of
mobile users attached to a PS node and b is the number of
buddy sizes. Meanwhile, the DHT-based method provides
good features for low replica load, however it comes at a
prices of increased searching latency.

6 PERFORMANCE EVALUATION
In this section, we present the details of the framework used
for the experiments. Our implementation of the network

simulator and the related architectures, including a Mesh-
based, PresenceCloud and a Chord-based presence server
architecture, was written in Java. The packet-level simulator
allows us to perform tests up to 20,000 users and 2,048 PS
nodes, after which simulation data no longer fit in RAM
and makes our experiments difficult. In our experiments,
the simulator first goes through a warming-up phase to
reach the network size (both PS nodes and users), and
the simulator starts of the 1,800 seconds test after the
measurement approach has stabilized (the stabilized time
is based on the system size).

We apply two physical topologies to simulate Internet
networks. 1) King-topology: This is a real Internet topology
from the King data set. The King data set delay matrix is
derived from Internet measurements using techniques that
described by Gummadi et al [35]. It consists of 2,048 DNS
servers. The latencies are measured as RTTs between the
DNS servers. 2) Brite-topology: This is an AS topology
generated by the BRITE topology generator [36] using the
Waxman model where alpha and beta are set to 0.15 and
0.2, respectively. In addition, HS (size of one side of the
plane) is set to 1,000 and LS (size of one side of a high-level
square) is set to 100. Totally, the Brite-topology consists of
1,000 nodes. In Fig. 6, we show the CDF of the King-
topology and the CDF of the Brite-topology.

The simulated topology places every PS node at a
position on the King-topology or the Brite-topology, chosen
uniformly at random. Note that our simulations involve
networks of less than 2,048 PS nodes, we use a pairwise
latency matrix derived from measuring the inter-PS node
latencies. And each mobile user also uniformly is attached
to a random PS node, the propagation delay between
mobile user and PS node is randomly assigned in the
range [1,20] (ms). The King-topology is assumed as the
default IP network topology. Every simulation result is
the average 20 runs. The average delay of King-topology
is 77.4 milliseconds and 96.2 milliseconds in the Brite-
topology. Therefore, the number of users is set to be 20,000,
unless otherwise specified.

Experiments were preformed on a Intel 2.8GHz Pentium
machine with 4G RAM. The rest of this section is organized
as follows. In Section 6.1, we discuss the three important
criteria using in the evaluation. Finally, we report the
performance results of the three server architectures.

6.1 Performance Metrics

Within the context of the model, we measure the perfor-
mance of server architectures using the following three
metrics: 1) Total Searching Messages: This represents the
total number of messages transferred between the query
initiator and the other PS nodes during the simulation time.
This is meat and potatoes metric in our experiments, since
it is widely regarded to be critical in a mobile presence
service that we discussed both in the Section 3 and the
Section 5. 2) Average Searching Messages per-arrived user:
The number of searching messages used per arrived user.
Moreover, this metric is independent of user arrival pattern.

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

 King-topology
 Brite-topology

C
D
F

End-to-End Latency (ms)

Fig. 6. End-to-end latency distribution over all pairs of
King topology and Brite-topology

3) Average Searching latency: This represents that average
buddy searching time for a joining mobile user. This metric
is a critical metric for measuring the search satisfaction of
mobile presence services.

6.2 Simulation Results

We first evaluate and compare the three server architectures
by considering the total buddy searching messages metric.
We instantiated a server network of 256 PS nodes in our
simulator, and ran a number of experiments to investigate
the effect of scalability of PS nodes on involved searching
messages. More precisely, we varied the user arrival rate
from 100 per second to 8,000 per second to explore the
relation between user arrival rate and the total searching
messages. In this test, the number of buddies is set to 100.

Fig. 7 depicts the total number of searching message
transmissions during simulation time (1,800 seconds) under
various rates of user arrival patterns (100 to 8,000 per
second). As the analytical results we discussed in Section 6,
we shows that for a given number of PS nodes, the total
number of searching messages is dominated by the user
arrival rate (λ) significantly. In Fig. 7, the total number
of searching messages significantly increased as the user
arrival rate increased. We could see that PresenceCloud
outperforms all other designs. Mesh-base and Chord both
require an enormous number of messages for searching
buddy lists in higher user arrival rates. However, vast
message transmissions may limit the scalability of the
server architecture in mobile presence services.

Fig. 8 shows the average number of searching message
transmissions during simulation time (1,800 seconds) under
various rates of user arrival patterns (100 to 8,000 per
second). As shown in Fig. 8, the average number of search-
ing message transmissions is independent of user arrival
pattern. Increasing the rate of user arrival pattern does
not increase the average searching message transmissions.
For each design, the number of message transmissions
is bounded as shown as Section 5. Our PersenceCloud

512 1024 2048 4096 8192

5.0x108

1.0x109

1.5x109

2.0x109

2.5x109

3.0x109

3.5x109

Logarithmic Scale

N
um

be
r

of
 p

re
se

nc
e

m
es

sa
ge

s

per second arrival rate

 PresenceCloud
 Mesh-based
 Chord

Fig. 7. The total message transmissions during sim-
ulation time (1,800s). (The x axis of this figure is in
logarithmic scale)

2000 4000 6000 8000
0

50

100

150

200

250

 per second arrival rate

A
ve

ra
ge

 s
ea

rc
hi

ng
 m

es
sa

ge
s

/ u
se

r

 PresenceCloud
 Mesh-based
 Chord

Fig. 8. The average message transmissions per
searching operation

requires the least message transmissions. But mesh-based
requires O(n) searching complexity (note that the number
of PS node is set to 256), the experimental results fit our
analysis in the Section 5. Chord-based design performs sec-
ond highest message transmissions per searching operation.
However, if the server architecture is not designed well, the
scalability problem of servers may limit itself to scale more
than thousands size, hence a poor server architecture may
not support a very large number of servers.

In order to study the scalability of server architecture
designs to the number of severs, we ran experiments in
which the user arrival rate is fixed to 2,000 per second and
the number of buddies is set to 120. In these experiments,
we increase the number of presence sever nodes from 32
to 2,048. Fig. 9 plots the average number of searching
messages per searching operation in various number of
PS nodes. As expected, the average message transmissions
of PresenceCloud increases gradually with the number of
servers. However, the average message transmissions of

32 64 128 256 512 1024 2048

0

500

1000

1500

2000

Logarithmic Scale

A
ve

ra
ge

 s
ea

rc
hi

ng
 m

es
sa

ge
s

Number of Presnece servers

 PresenceCloud
 Mesh-based
 Chord
 4*n0.5

Fig. 9. Average searching messages vs. number of PS
nodes (The x axis of this figure is in logarithmic scale)

PresenceCloud is bounded by 4×
√
n. Recall that we had

shown the searching complexity of our PresenceCloud in
the Section 5. This results suggest good scalability with
the number of servers for server architecture design. The
simulation results also verify our analysis. Moreover, the
mesh-based performs the poorest performance than other
sever architecture designs. It requires O(n) searching com-
plexity. Chord-based performs logarithmical performance
in this metrics. Generally, the number of average message
transmissions grows slowly with the network size in Chord-
based and PresenceCloud designs.

In the following we studied the scalability of server ar-
chitecture designs while varying the number of buddies per
mobile user. We ran experiments in which the number of PS
nodes is set to 256 and the user arrival rate is fixed to 2,000
per second. In these experiments, we increase the number of
buddies per user from 80 to 250. Fig. 10 plots the average
number of searching messages per searching operation in
various number of buddy per mobile user. As expected,
the average message transmissions of PresenceCloud and
mesh-based are not impacted by the buddy size. However,
the average message transmissions of Chord-based design
increases with the buddy size. The reason is that based on
the traditional DHT protocol, each buddy should be treated
as a key by hash functions for routing operation in most of
DHTs. And it also needs at most b messages for reporting
the searching results to the source PS node.

Next, we investigate the search satisfaction of server
architecture designs. We use our simulator to study the
buddy searching latency while varying the number of PS
nodes. The simulation environment is set as Fig. 9. As
shown as Fig. 11, for PresenceCloud, the buddy searching
latency grows gently with the number of PS nodes. How-
ever, the buddy searching latency of mesh-based design
is significantly better than PresenceCloud. The reason is
that, by using the mesh-based design, every PS node can
retrieve all desired buddy information in its current replica
and return the presence information of buddy to user in

80 120 160 200 240
0

50

100

150

200

250

300

350

400

A
ve

ra
ge

 s
ea

rc
hi

ng
 m

es
sa

ge
s

/ u
se

r

Number of Buddies

 PresenceCloud
 Mesh-based
 Chord

Fig. 10. Average searching messages vs. number of
buddy in a 256 PS nodes system

32 64 128 256 512 1024 2048
0

100

200

300

400

500

600

Logarithmic Scale

La
te

nc
y

(m
s)

Number of Presnece servers

 PresenceCloud
 Mesh-based
 Chord

Fig. 11. Average buddy searching latency vs. number
of PS nodes (The x axis of this figure is in logarithmic
scale)

one hop RTT, and the one hop RTT is quite small in our
assumption. PresenceCloud, on the other hand, needs to re-
trieve all available replicas from its neighbors, which affects
the buddy search time. Although the mesh-based design
achieves a faster buddy search time and a higher replica hit
ratio than PresenceCloud, it sacrifices the scalability of the
server architecture in mobile presence services. Under the
Chord-based design, a search operation may need to visit
a logarithmic number of PS nodes to find the buddies of
users. Thus, for latency-sensitive applications, DHT-based
designs may be unsuitable for mobile presence services due
to their high lookup costs [37].

We also studied the buddy searching latency of server
architecture designs while varying the number of buddies.
The simulation environment is set as Fig. 10. In these
experiments, we increase the number of buddies per user
from 80 to 240. Fig. 12 depicts the buddy searching latency
with the addition of buddy until 240. As shown in Fig. 12,
in all designs, the buddy searching latency is not impacted

80 120 160 200 240
0

50

100

150

200

250

300

350

400
La

te
nc

y
(m

s)

Number of Buddies

 PresenceCloud
 Mesh-based
 Chord

Fig. 12. Average buddy searching latency vs. number
of PS nodes

by the number of buddies. The search latency is dominated
by the diameter of the overlay, thus the buddy searching
latency does not grows with the number of buddies. Clearly,
it is a tradeoff, the experiment results show that mesh-based
design performs best search satisfaction, but suffers heavily
communication cost. However, our PresenceCloud reduces
the significantly communication cost without sacrificing
search satisfaction extremely.

Note that the buddy searching latency is a critical metric
for measuring the search satisfaction of a mobile presence
service. To the best of our knowledge, we are not aware
any study about the buddy searching latency in mobile
presence services. However, in our survey, we noticed that
the average DNS lookup latency was 255.9 ms that reported
by Ramasubramanian et al. [38]. The results is estimated in
a large scale DNS in Planet Lab. This report could become
a solid reference material for user satisfaction. Compared to
the DNS lookup results in the article, the buddy searching
latency of PresenceCloud is tolerable. With high probabil-
ity, we could expect that our PresenceCloud appeases the
user satisfaction basically.

Fig. 13 plots that the relative performance of various
server architecture designs in the buddy searching latency
for two different network topologies. We ran experiments
in which the number of PS nodes is set to 512, the user
arrival rate is fixed to 2,000 per second, and the number
of buddies is set to 200. Fig. 13(a) shows the latency
distribution results for the king-topology, while Fig. 13(b)
shows the results for the Brite-topology specified earlier.
As shown in the two Figures 13(a) and 13(b), the mesh-
based design takes much less time to search buddy list
than all two other designs under both King and Brite
topologies. With the King-topology, the curve for Chord-
based design has a flatter tail. This is due to the fact
that the distribution of physically link latency in king-
topology is more skewed. Note that the mean delay in King-
topology is 77.4 milliseconds and is 96.2 milliseconds in
the Brite-topology. Thus the expected search latency for
PresenceCloud is about 150 milliseconds in King-topology

and is approximately 200 milliseconds in Brite-topology.
However, the high delay results of Chord-based design are
caused by searches whose hops follow high delay paths.

7 DISCUSSIONS

A number of issues require further consideration. Our
current PresenceCloud does not address the communication
security problem, and the presence server authentication
problem, we discuss the possible solutions as follows. The
distributed presence service may make the mobile presence
service more prone to communication security problems,
such as malicious user attacks and the user privacy. Several
approaches are possible for addressing the communication
security issues. For example, the Skype protocol offers
private key mechanisms for end-to-end encryption. In Pres-
enceCloud, the TCP connection between a presence server
and users, or a presence server could be established over
SSL to prohibit user impersonation and man-in-the-middle
attacks. This end-to-end encryption approach is also used
in XMPP/SIMPLE protocol.

The presence server authentication problem is another
security problem in distributed presence services. In cen-
tralized presence architectures, it is no presence server
authentication problem, since users only connect to an
authenticated presence server. In PresenceCloud, however,
requires a system that assumes no trust between presence
servers, it means that a malicious presence server is possible
in PresenceCloud. To address this authentication problem,
a simple approach is to apply a centralized authentica-
tion server. Every presence server needs to register an
authentication server; PresenceCloud could certificate the
presence server every time when the presence server joins
to PresenceCloud. An alternative solution is PGP web of
trust model [39], which is a decentralized approach. In this
model, a presence server wishing to join the system would
create a certifying authority and ask any existing presence
server to validate the new presence server’s certificate.
However, such a certificate is only valid to another presence
server if the relying party recognizes the verifier as a trusted
introducer in the system. These two mechanisms both can
address the directory authentication problem principally.

In additional, the user satisfaction of mobile presence
service is another search issue. Several studies have inves-
tigated the issues of user satisfaction in several domains,
including VOIP [40], WWW search engine [41]. To the
best of our knowledge, there is no study of exploring the
user satisfaction issues, such as search response time, search
precise, etc, about mobile presence services. Given the
growth of social network applications and mobile device
computing capacity, it is an interesting research direction
to explore the user satisfaction both on mobile presence
services or mobile devices.

8 CONCLUSION

In this paper, we have presented PresenceCloud, a scalable
server architecture that supports mobile presence services
in large-scale social network services. We have shown that

0 300 600 900 1200 1500 1800 2100

0.0

0.2

0.4

0.6

0.8

1.0

King-topology

C
D

F

Latency (ms)

 PresenceCloud
 Meah-based
 Chord

(a) King-topology

0 200 400 600 800 1000 1200 1400

0.0

0.2

0.4

0.6

0.8

1.0

Brite-topology

C
D

F

Latency (ms)

 PresenceCloud
 Meah-based
 Chord

(b) Brite-topology

Fig. 13. The CDF of buddy searching latency in King and Brite topology

PresenceCloud achieves low search latency and enhances
the performance of mobile presence services. In addition,
we discussed the scalability problem in server architecture
designs, and introduced the buddy-list search problem,
which is a scalability problem in the distributed server
architecture of mobile presence services. Through a simple
mathematical model, we show that the total number of
buddy search messages increases substantially with the user
arrival rate and the number of presence servers. The results
of simulations demonstrate that PresenceCloud achieves
major performance gains in terms of the search cost and
search satisfaction. Overall, PresenceCloud is shown to be
a scalable mobile presence service in large-scale social
network services.

ACKNOWLEDGMENT

The work was supported in part by the National Science
Council of Taiwan, R.O.C., under Contracts NSC99-2221-
E-001-013-MY3.

REFERENCES

[1] Facebook, http://www.facebook.com.
[2] Twitter, http://twitter.com.
[3] Foursquare http://www.foursquare.com.
[4] Google latitude, http://www.google.com/intl/enus/latitude/intro.html.
[5] Buddycloud, http://buddycloud.com.
[6] Mobile instant messaging, http://en.wikipedia.org/wiki/Mobile

instant messaging.
[7] R. B. Jennings, E. M. Nahum, D. P. Olshefski, D. Saha, Z.-Y. Shae,

and C. Waters, ”A study of internet instant messaging and chat
protocols,” IEEE Network, 2006.

[8] Gobalindex, http://www.skype.com/intl/en-us/support/user-guides/
p2pexplained/.

[9] Z. Xiao, L. Guo, and J. Tracey, ”Understanding instant messaging
traffic characteristics,” Proc. of IEEE ICDCS, 2007.

[10] C. Chi, R. Hao, D. Wang, and Z.-Z. Cao, ”Ims presence server:
Traffic analysis and performance modelling,” Proc. of IEEE ICNP,
2008.

[11] Instant messaging and presence protocol ietf working group
http://www.ietf.org/html.charters/impp-charter.html.

[12] Extensible messaging and presence protocol ietf working group
http://www.ietf.org/html.charters/xmpp-charter.html.

[13] Sip for instant messaging and presence leveraging extensions
ietf working group. http://www.ietf.org/html.charters/simple-
charter.html.

[14] P. Saint-Andre., ”Extensible messaging and presence protocol
(xmpp): Instant messaging and presence describes instant messaging
(im), the most common application of xmpp,” RFC 3921, 2004.

[15] B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitema, and
D. Gurle, ”Session initiation protocol (sip) extension for instant
messaging,” RFC 3428, 2002.

[16] Jabber, http://www.jabber.org/.
[17] Peer-to-peer session initiation protocol ietf working group,

http://www.ietf.org/html.charters/p2psip-charter.html.
[18] K. Singh and H. Schulzrinne, ”Peer-to-peer internet telephony using

sip,” Proc. of ACM NOSSDVA, 2005.
[19] P. Saint-Andre, ”Interdomain presence scaling analysis for the

extensible messaging and presence protocol (xmpp),” RFC Internet
Draft, 2008.

[20] A. Houri, T. Rang, and E. Aoki, ”Problem statement for sip/simple,”
RFC Internet-Draft, 2009.

[21] A. Houri, S. Parameswar, E. Aoki, V. Singh, and H. Schulzrinne,
”Scaling requirements for presence in sip/simple,” RFC Internet-
Draft, 2009.

[22] S. A. Baset, G. Gupta, and H. Schulzrinne, ”Openvoip: An open
peer-to-peer voip and im system,” Proc. of ACM SIGCOMM, 2008.

[23] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, ”Sip: Session initiation
protocol,” RFC 3261, 2002.

[24] Open Mobile Alliance, OMA instant messaging and presence
service, 2005.

[25] W.-E. Chen, Y.-B. Lin, and R.-H. Liou, ”A weakly consistent
scheme for ims presence service,” IEEE Transactions on Wireless
Communications, 2009.

[26] N. Banerjee, A. Acharya, and S. K. Das, ”Seamless sip-based
mobility for multimedia applications.” IEEE Network, vol. 20, no. 2,
pp. 6–13, 2006.

[27] P. Bellavista, A. Corradi, and L. Foschini, ”Ims-based presence
service with enhanced scalability and guaranteed qos for interdomain
enterprise mobility,” IEEE Wireless Communications, 2009.

[28] A. Houri, E. Aoki, S. Parameswar, T. Rang, , V. Singh, and
H. Schulzrinne, ”Presence interdomain scaling analysis for
sip/simple,” RFC Internet-Draft, 2009.

[29] M. Maekawa, ”A
√
n algorithm for mutual exclusion in decentral-

ized systems,” ACM Transactions on Computer Systems, 1985.
[30] D. Eastlake and P. Jones, ”Us secure hash algorithm 1 (SHA1),”

RFC 3174, 2001.
[31] M. Steiner, T. En-Najjary, and E. W. Biersack, ”Long term study of

peer behavior in the kad DHT,” IEEE/ACM Trans. Netw., 2009.
[32] K. Singh and H. Schulzrinne, ”Failover and load sharing in sip

telephony,” International Symposium on Performance Evaluation of
Computer and Telecommunication Systems, July 2005.

[33] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrish-
nan, ”Chord: A scalable peer-to-peer lookup service for internet,”
IEEE/ACM Tran. on Networking, 2003.

[34] X. Chen, S. Ren, H. Wang, and X. Zhang, ”Scope: scalable
consistency maintenance in structured p2p systems,” Proc. of IEEE
INFOCOM, 2005.

[35] K. P. Gummadi, S. Saroiu, and S. D. Gribble., ”King: Estimating
latency between arbitrary internet end hosts,” Proc. of ACM IMW,
2002.

[36] A. Medina, A. Lakhina, I. Matta, and J. Byers, ”Brite: An approach
to universal topology generation,” Proc of ACM MASCOTS, 2001.

[37] R. Cox, A. Muthitacharoen, and R. T. Morris, ”Serving DNS using
a peer-to-peer lookup service,” Proc. of IPTPS, 2002.

[38] V. Ramasubramanian and E. G. Sirer, ”Beehive: 0(1) lookup perfor-
mance for power-law query distributions in peer-to-peer overlays,”
Proc. of USENIX NSDI, 2004.

[39] A. Abdul-Rahman and S. Hailes., ”A distributed trust model,” Proc.
of the workshop on New security paradigms, 1997.

[40] K.-T. Chen, C.-Y. Huang, P. Huang, and C.-L. Lei, ”Quantifying
skype user satisfaction,” Proceedings of ACM SIGCOMM, 2006.

[41] P. Anick, ”Using terminological feedback for web search refinement:
a log-based study,” Proceedings of ACM SIGIR conference on
Research and development in informaion retrieval, pp. 88–95, 2003.

Chi-Jen Wu is a Ph.D. student in the EECS
department of National Taiwan University
since September 2007. Chi-Jen also is a
research assistant at the Institute of Informa-
tion Science of Academia Sinica since Octo-
ber 2004. Chi-Jen received his M.S. degree
in Communication Engineering from National
Chung Cheng University, Taiwan in 2004. His
research interests include Anycasting, Peer-
to-Peer systems and Mobile networks. He is
a student member of the ACM.

Jan-Ming Ho received his Ph.D. degree in
electrical engineering and computer science
from Northwestern University in 1989. He
received his B.S. in electrical engineering
from National Cheng Kung University in 1978
and his M.S. at Institute of electronics of Na-
tional Chiao Tung University in 1980. Dr. Ho
joined the Institute of Information Science,
Academia Sinica as associate research fel-
low in 1989, and was promoted to research
fellow in 1994. He visited IBM’s T. J. Watson

Research Center in summer 1987 and summer 1988, and the
Leonardo Fibonacci Institute for the Foundations of Computer Sci-
ence, Italy in summer 1992. In 2004-2006, he was jointly appointed
by National Science Council, Taiwan, where he served as Director
General of Division of Planning and Evaluation. He was Associate
Editor of IEEE Transaction on Multimedia. His research interests
cover the integration of theory and applications, including information
retrieval and extraction, knowledge management, combinatorial op-
timization, multimedia network protocols and their applications, web
services, bioinformatics, and digital library and archive technologies.
Dr. Ho also published results in VLSI/CAD physical design.

Ming-Syan Chen received the B.S. degree
in electrical engineering from National Tai-
wan University, Taipei, Taiwan, and the M.S.
and Ph.D. degrees in Computer, Information
and Control Engineering from The University
of Michigan, Ann Arbor, MI, USA, in 1985
and 1988, respectively. He is now a Distin-
guished Research Fellow and the Director of
Research Center of Information Technology
Innovation (CITI) in the Academia Sinica,
Taiwan, and is also a Distinguished Professor

jointly appointed by EE Department, CSIE Department, and Grad-
uate Institute of Communication Eng. (GICE) at National Taiwan
University. He was a research staff member at IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, USA from 1988
to 1996, the Director of GICE from 2003 to 2006, and also the
President/CEO of Institute for Information Industry (III), which is one
of the largest organizations for information technology in Taiwan,
from 2007 to 2008. His research interests include databases, data
mining, mobile computing systems, and multimedia networking, and
he has published more than 270 papers in his research areas. In
addition to serving as program chairs/vice-chairs and keynote/tutorial
speakers in many international conferences, Dr. Chen was an asso-
ciate editor of IEEE TKDE and also JISE, is currently on the editorial
board of Very Large Data Base (VLDB) Journal, Knowledge and
Information Systems (KAIS) Journal, and International Journal of
Electrical Engineering (IJEE), and is a Distinguished Visitor of IEEE
Computer Society for Asia-Pacific from 1998 to 2000, and also from
2005 to 2007. He holds, or has applied for, eighteen U.S. patents
and seven ROC patents in his research areas. He is a recipient of the
NSC (National Science Council) Distinguished Research Award, Pan
Wen Yuan Distinguished Research Award, Teco Award, Honorary
Medal of Information, and K.-T. Li Research Breakthrough Award for
his research work, and also the Outstanding Innovation Award from
IBM Corporate for his contribution to a major database product. He
also received numerous awards for his research, teaching,inventions
and patent applications. Dr. Chen is a Fellow of ACM and a Fellow of
IEEE.

