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Abstract—With the rapid development of quantitative trading,
stock selection is an enduring task, that requires consideration
of the characteristic of stocks and investment strategies. Fuzzy-
set theory is outstanding in modeling abstract characteristics,
which is suitable for building the connection between stocks and
strategies. In this paper, we propose a stock selection system
(SSS) based on the suitability index (SI) and fuzzy-set theory.
SSS utilizes position sizing to extract stock characteristics, SI,
which expresses not only the characteristics of stocks but also
the suitability for strategies. The SI is then transformed by the
designed fuzzy-set modules for stock selection and investment.
Several stock selection mechanisms are proposed, denoted as
SSS-T1, SSS-T2, SSS-WT1, and SSS-WT2. Experimental results
show that SSS has a slight improvement in precision, but leads
to a significant improvement in investment. The proposed SSS-
WT1 and SSS-WT2 systems achieve the highest annual returns
of 6.2% and the highest Sharpe ratios of 0.924, outperforming
the benchmark with the annual return of 1.9% and the Sharpe
ratio of 0.201.

Index Terms—Stock selection, position sizing, suitability index,
momentum, contrarian

I. INTRODUCTION

With the rapid progress of information technology, re-
searchers have shown a keen interest in quantitative trading.
Quantitative trading is also known as algorithmic trading,
which uses quantitative information to support investment de-
cisions [1]. Data mining is an effective technique for extracting
valuable and profitable rules from historical data. Syu et al.
[2] proposed a self-managed portfolio system that identifies
profitable features through adaptive association mining. To
achieve highly complex analysis and prediction, machine
learning techniques are widely used in finance. Wu et al.
[3] proposed portfolio management systems in the context of
deep reinforcement learning. The literature shows the ability
of artificial intelligence to support financial investment and
decision making.

However, as numerous investment strategies are proposed,
stock selection is an enduring task that requires consideration

of the characteristics of stocks and strategies. Momentum
and contrarian are two well-known contrary characteristics of
strategies, but the lack of connection to stocks causes obstacles
for stock selection. Fuzzy-set theory is excellent for modeling
abstract characteristics in an imprecise environment, and is
suitable for establishing links between stocks and strategies.
Wu et al. [4] proposed a fuzzy system to quantify the char-
acteristics of stocks through random trading, and achieved
high predictive accuracy and 1.5 times profitability over the
benchmark. However, due to the high volatility of the financial
market, random trading algorithms may produce unstable
results in different economic environments. Therefore, stock
selection systems should be updated regularly to obtain the
latest information. In addition, the papers focused only on the
characteristics of stocks, but showed a weak link to investment
strategies.

To address these problems, in this paper, we propose a stock
selection system (SSS) based on suitability index (SI) and
fuzzy-set theory. We first design position sizing algorithms
to extract the characteristics of stocks, which are determin-
istic algorithms with high explainability and no randomness.
The extracted characteristics express not only the momentum
and contrarian characteristics but also the suitability for the
investment strategy, denoted as SI. Subsequently, the SI is
transformed by the designed fuzzy-set modules to act as a
decision basis for stock selection and further investments.
Several stock selection mechanisms are proposed, and SSS
with different mechanisms are denoted as SSS-T1, SSS-T2,
SSS-WT1, and SSS-WT2. Furthermore, a rolling window
mechanism is used to regularly update system parameters,
which increases the reliability of real-world investments.

Experimental results show that the proposed systems only
have slight improvements in precision, but lead to significant
improvements in investment, since the membership value can
further assist portfolio management. The proposed WT1 and
WT2 systems achieve the highest annual returns of 4.7% and



6.2% and the highest Sharpe ratios of 0.924 and 0.698 (on
TRB and GAP strategies), outperforming the benchmark with
the annual returns of 1.0% and 1.9% and the Sharpe ratios of
0.115 and 0.201. In summary, the proposed SSS shows a slight
improvement in selection precision and excellent improve-
ments in investment performance and portfolio management,
especially in profitability.

II. LITERATURE REVIEW

In this section, the fuzzy-set theory and the membership
functions are first introduced in Section II-A. The charac-
teristics of trading strategies and stocks are then studied in
Section II-B. Additionally, the financial indicators to evaluate
investment performance are introduced in Section II-C.

A. Fuzzy-set Theory and Membership Functions

Fuzzy-set is a theory to figuratively grade a concept to a
membership degree, and is distinct from probability, because
the concept may be multivariate and lack sharply defined
criteria [5]. The fuzzy-set has a superior ability to model
the uncertainty in the imprecise environment, and provides
information for assisting human decision-making.

Most ordinary fuzzy theories belong to type 1 fuzzy-set.
Based on the formulation of [6], a type-1 fuzzy-set, F1, maps
a set of elements, X , to a set of type-1 membership values,
I = [0, 1], expressed as:

F1 : X → I, (1)

F1 = {(x,MF1
(x)) | x ∈ X, MF1

(x) ∈ I}, (2)

where MF1
is the membership function of F1.

However, uncertainty may be contained in the type-1 fuzzy-
set; therefore, a higher-order type-2 fuzzy-set [7] was subse-
quently proposed, which is able to describe uncertainty and
capture more information. Based on the formulation of [6], a
type-2 fuzzy-set, F2, maps a set of independent variables, X ,
to a set of type-2 membership values, I2 = [0, 1] → [0, 1]
(ranges of type-1 membership degree), and can be expressed
as:

F2 : X → I2, (3)

F2 = {(x,MF2
(x)) | x ∈ X, MF2

(x) ∈ I2}, (4)

where MF2
is the membership function of F2.

The above-mentioned membership functions map the in-
dependent variables to the degrees of truth, ranging between
0 and 1. Among various membership functions, R-, L-, and
sigmoid (S-) functions are commonly used [8].

The R- and L- functions are two symmetric Z-shaped
functions with two boundaries (a, b, a < b). They have a linear
transformation inside the boundary and map values outside the
boundary to 0 or 1, which is defined as follows:

R(x) =


1 x < a
b−x
b−a a ≤ x ≤ b
0 x > b

, (5)

L(x) =


0 x < a
x−a
b−a a ≤ x ≤ b
1 x > b

. (6)

Note that the derivatives of the R- and L-functions are
not continuous. To avoid the problem of discontinuity, the
S-function (particularly, the logistic function) can be used,
defined as follows:

S(x) =
1

1 + e−x
=

1

1 + a−(x+b)
, (7)

where a and b are parameters to control the slope and offset.

B. Characteristics of Stocks and Trading Strategies

Momentum and contrarian are two well-known categories
of trading strategies that describe trading behavior [9], and
are contrary concepts that often generate opposite trading
decisions. Momentum strategies assume that the movements of
stock price are driven by momentum, and a similar price trend
will occur in the near future [10]. For example, opening range
breakout uses a pre-determined threshold to capture price
movements and make investment decisions. Literatures have
shown that the opening range breakout strategy is profitable in
variou markets [11], and is further enhanced by multi-objective
optimization [12] and evolutionary algorithms [13]. Contrarian
strategies are extended from the mean-reversion phenomenon
of stock prices [14], which finds that the price tends to
move toward the mean. A prevailing contrarian strategy is the
Bollinger bands [15], which utilizes price volatility to detect
the signal of mean-reversion.

After a stock position is established, the task of position
sizing [16] also involves the concepts of momentum and
contrarian. The momentum-type position sizing will increase
the position when it earns profits, and will shrink the position
when it gets losses, because it believes that the profit and
loss will increase with the momentum. On the other hand, the
contrarian-type position sizing will shrink the position when
it earns profits, and will increase the position when it gets
losses, because it believes that the profit and loss will start to
reverse as contrarian.

Fixed Ratio (FR) is an intuitive position sizing mecha-
nism [17] that states the relationship between the number of
contracts (position size) and the amount of profit should be
controlled by a positive fixed ratio, δ. When the momentum-
type fixed ratio mechanism is activated, the base price (BP )
is set to the current price. Once the stock price reaches
≥ BP × (1 + n × δ), the nth grid price, the position should
be increased to n units of funds, where n is a positive integer.
In other words, when the price increases by each δ of BP ,
the position should be increased by one new unit of funds.
In the fixed ratio contrarian mechanism, once the stock price
reaches ≥ BP × (1 + n× δ), the position should be reduced
by n units of funds, the nth lattice price. In other words, when
the price increases by each δ of BP , one unit of funds should
be removed from the position.



C. Financial Indicators

Several indicators are adopted to evaluate the investment
performance. A fundamental indicator is the annual return
of investment for the profitability measurement [18]. Let the
total profit during the investment period be Profit and the
investment cost be Cost and the number of investment days
be Days. The annual return is defined as:

Profit

Cost× Days
252

, (8)

where Days
252 is the number of investment years, and 252 is the

average number of trading days in a year (≈ 365× 5
7 ).

In considering the trade-off between profitability and risk,
the Sharpe ratio [19] is an indicator of how much profit can
be obtained by taking a unit of risk. Let the annual return
be AnnRet, the risk-free return rate be rf , and the standard
deviation of daily returns be Std. The Sharpe ratio is defined
as:

AnnRet− rf
Std×

√
252

, (9)

where
√
252 is a multiplier to adjust daily volatility to annu-

alized volatility. rf is usually replaced by the treasury yield
or even ignored (also in this paper).

III. PROPOSED SSS: STOCK SELECTION SYSTEM

In this section, the architecture of the proposed SSS is
presented. To increase the practicability of investment, SSS
is executed with rolling window. Specifically, SSS trains with
the data of the previous month to obtain the SI, and selects
and trades stocks for subsequent months.

The architecture of the proposed SSS is shown in Fig. 1.
For a strategy, the training data is first implemented in the
position sizing algorithms, obtaining the SI of each stock
(Section III-A). The SI of each stock is further transformed
by the fuzzy-set theory (Section IV) for stock selection. The
two membership values are utilized to quantify the suitability
and select the stocks (Section IV-B), and SSS finally applies
the strategy to the selected stocks.

A. Position Sizing

The main idea of position sizing is to adjust the position
size according to the unrealized profit and loss. We design
momentum and contrarian position sizing algorithms based on
the fixed ratio [17]. The algorithms require two parameters,
δ and MaxPos, to specify the grid size and the maximum
units of position, as shown in Section II-B. The algorithms
also require the daily opening price, highest price, and closing
price of a stock, denoted as OPEN, HIGH, and CLOSE, which
are D-dimensional vectors with D-day prices, where D is the
number of days in the month. Finally, the algorithms output
the momentum SI (MSI) and the contrarian SI (CSI) of the
stock. Note that the δ and MaxPos are set to 2% and 10 in
the following experiments.

The momentum position sizing is defined in Algorithm 1.
Starting from the first day, initialize the base price (BP ) to

the opening price of the T -th day (initialized to 1) and set the
current grid index (Index, an integer) to 0, which records the
grids the price has reached and also the stock units bought
(line 4). Also, set the last return rate (LRet) to 0 and the list
of purchase costs (Cost) to empty (line 5).

The fixed ratio invites the purchase of new stock units at
integer grids, but the stock price is not continuous within
two trading days. Therefore, we need to observe the grid of
opening prices (OGrid, line 7). If the OGrid > Index, the
algorithm buys new stock units at the opening price (even if
it is not an integer grid, it is the closest and tradable price).
In summary, once the OGrid > Index, the algorithm buys
several units of stock at the opening price until the Index
reaches the OGrid (lines 9 to 11).

During the trading day, we then observe the grid of the
highest price (HGrid, line 8). Once the HGrid > Index,
the algorithm buys several units of stock at each integer grid
price, until the Index reaches the HGrid (lines 12 to 14).
Note that the prices from OGrid to HGrid are continuous,
and the integer grids between them are tradable. In addition,
the total position cannot exceed MaxPos, and the cost of
buying each position is recorded in Cost (lines 11 and 14).

As for the termination strategy, all positions are sold at the
closing price as soon as the closing price < BP×(1+(Index−
1)× δ), i.e., the price falls by one grid (lines 18 to 20). The
fixed ratio strategy can be restarted from the next day. If the
position is not terminated until the last day, D, the remaining
positions are sold at the closing price of the D-th day (lines
21 and 23).

The daily return of each day is recorded in DRet. This is
the return on selling all positions at the closing price of the
day minus the last return, LRet (lines 15 to 17). Until the last
day, the momentum SI (MSI) is defined as the Sharpe Ratio
of the period (line 25), where Mean(·) and Std(·) are the mean
and standard deviation of the list.

The contrarian position sizing is similar to Algorithm 1 with
the following differences. On each day, if OGrid > Index,
the algorithm sells several units of stocks at the opening price
until the Index reaches the OGrid (lines 9 to 11). During the
trading day, once the HGrid > Index, the algorithm sells
several units of stock at each integer grid price until the Index
reaches the HGrid (lines 12 to 14). The gain of selling each
position is recorded in Gain (lines 12 and 15). Note that a
stock has two SI calculated by the momentum position sizing
and the contrarian position sizing, namely MSI and CSI.

B. Example of Position Sizing

A brief example of the momentum position sizing is shown
in Fig. 2, and assumes that the δ is 10%. Starting from the T -
th day, the base price (BP ) is set to the opening price of 50,
and the grid index (Index) is initialized to 0. The HGrid of
the T -th day is b( 58

50 −1)/10%c = 1. Since HGrid > Index,
a new position is bought at the grid price 1st, 55 dollars, and
the Index is updated to 1. The OGrid and HGrid of the
T +1-th day are b( 62

50 − 1)/10%c = 2 and b( 68
50 − 1)/10%c =

3. Since OHrid > Index, a new position is bought at the



Fig. 1: Architecture of the proposed SSS.

Algorithm 1 Momentum Position Sizing
Input: δ, MaxPos, OPEN, HIGH, CLOSE, D
Output: MSI
1: T , DRet = 1, []; . day index, daily return
2: while T < D do
3: if True then
4: BP , Index = OPEN[T ], 0; . base price, current grid
5: Cost, LRet = [], 0; . buying cost, last return
6: for d from T st to Dth day do
7: OGrid = b ( OPEN[d]

BP
-1) / δ c;

8: HGrid = b ( HIGH[d]
BP

-1) / δ c;
9: while OGrid > Index and len(Cost) < MaxPoS do

10: Inedx += 1; . add a position
11: Cost += [ OPEN[d] ];
12: while HGrid > Index and len(Cost) < MaxPoS do
13: Inedx += 1; . add a position
14: Cost += [ BP · (1+Index·δ) ];
15: Ret = return rate of selling all stocks at CLOSE[d];
16: DRet += [ Ret - LRet ]; . record the daily return
17: LRet = Ret;
18: if CLOSE[d] < BP · (1 + (Index−1) · δ) then
19: T = d;
20: break; . termination condition
21: if Not terminated yet then
22: Ret = return rate of selling all stocks at CLOSE[D];
23: DRet += [ Ret - LRet ];
24: T += 1;
25: MSI =

Mean(DRet)
√
252

Std(DRet) ;
26: Return MSI.

opening price, 62 dollars, and the Index is updated to 2. As
HGrid > Index, a new position is bought at the 3rd grid
price, 65 dollars, and the Index is updated to 3.

On T +2-th day, the HGrid is b( 72
50 −1)/10%c = 4. Since

HGrid > Index, a new position is bought at the 4rd grid
price, 70 dollars, and the Index is updated to 4. Even if the
lowest price of the T + 2-th day is lower than the (Index−
1)th = 3nd grid price, the closing price is still higher than the
3nd grid price, and the position is not terminated. On T +3-th
day, the closing price is lower than the grid price (Index −
1)th = 3rd, and all positions are sold at the closing price of
(T + 3)-th day. The same algorithmis applied on the (T + 4)-
th day until the last day, D. Note that the contrarian position
sizing is similar, and the buying is replaced by selling.

C. Suitability Index and Evaluation Strategies

In this paper, we adopt two well-known strategies, all of
which have a momentum- and a contrarian-type perspective
(4 strategies in total). The Gap strategy (GAP) [20] stipulates
that when the opening price is greater than (less than) the
last closing price, the signal of momentum GAP, GAP Mom,
(contrarian GAP, GAP Con) is triggered. Trading range break

Fig. 2: Schematic diagram of the designed position sizing.

(TRB) [21] stipulates that when the opening price is greater
than the highest price (less than the lowest price) of the
previous n days, the signal of momentum TRB, TRB Mom,
(contrarian TRB, TRB Con) is triggered. We set the n to 3 in
this paper.

The position sizing algorithms defined in Section III-A are
also adopted in the above strategies. Specifically, GAP Mom
and TRB Mom adopt the momentum position sizing of Algo-
rithm 1, with line 3 replaced by the condition of GAP Mom
and TRB Mom, respectively. The momentum suitability index
for GAP Mom is denoted as MSI-GAP, and the momentum
suitability index for the TRB Mom is denoted as MSI-TRB.
Similarly, GAP Con and TRB Con adopt the contrarian posi-
tion sizing of, replacing line 3 with the condition of GAP Con
and TRB Con, respectively. The contrarian suitability index
for the GAP Con is denoted as CSI-GAP, and the contrarian
suitability index for TRB Con is denoted as CSI-TRB.

IV. FUZZY-SET QUANTIFYING MODULES

In this section, the designed type-1 and type-2 modules are
presented. Parameter optimization with rolling window is then
presented in Section IV-A, and the stock selection mechanisms
are introduced in Section IV-B.

We design the type-1 momentum membership function,
T1-MMF, to transform a MSI into a type-1 momentum
membership value, T1-MMV. Similarly, the type-1 contrarian
membership function, T1-CMF, is designed to transform a
CSI to a type-1 contrarian membership value, T1-CMV. The
MSI and CSI are in R, and the T1-MMV and T1-CMV are in



Fig. 3: Designed rolling window and parameter optimization.

[0, 1]. The T1-MMF and T1-CMF are designed as S-functions
(logistic functions), as shown in Eqs. 10 and 11.

T1-MMV = T1-MMF(MSI) =
1

1 + P1 −MSI+P2
(10)

T1-CMV = T1-CMF(CSI) =
1

1 + P3 −SCI+P4
(11)

The P1 and P3 are parameters to determine the slope, and
the P2 and P4 control the offsets of the functions. Parameters
(P1 to P4) are optimized using the training data of each
month, as described in Section IV-A.

Due to the contrary concept of momentum and contrarian
characteristics, the linguistic term of momentum (contrarian)
can express the inverse linguistic term of contrarian (momen-
tum). Therefore, we arrange the one minus the momentum
(contrarian) membership value to represent one side of the
type-2 contrarian (momentum) membership value.

The type-2 momentum and contrarian membership func-
tions, T2-MMF and T2-CMF, takes both MSI and CSI as
inputs, and maps to a type-2 momentum membership value,
T2-MMV (a type-2 contrarian membership value, T2-CMV),
where T2-MMV (T2-CMV) is a range of [0, 1] → [0, 1]. The
T2-MMF and T2-CMF are also designed as S-functions, as
shown in Eqs. 12 and 13.

T2-MMV = T2-MMF(MSI, CSI)

= min(M, 1− C)→ max(M, 1− C),
(12)

where M = 1
1+P1 −MSI+P2 and C = 1

1+P3 −CSI+P4 .

T2-CMV = T2-CMF(MSI, CSI)

= min(C, 1−M)→ max(C, 1−M),
(13)

where M = 1
1+P1 −MSI+P2 and C = 1

1+P3 −CSI+P4 . The T2-
MMV is a range from the minimum to the maximum of M

and 1 − C, and the T2-CMV is a range from the minimum
to the maximum of C and 1−M . The M and C in Eqs. 12
and 13 are the membership values transformed by T1-MMF
and T1-CMF with different parameters (P1 to P4), which are
independently optimized by the training data of each month,
as described in Section IV-A.

A. Parameters Optimization

Parameters in the fuzzy-set modules are independently
optimized by the training data of the rolling window. Take
the GAP as an example, and Fig. 3 illustrates the opti-
mization progresses. In training month M , the system first
calculates the momentum and contrarian suitability indices
of all N stocks, namely [MSI-GAP1, · · · ,MSI-GAPN ] and
[CSI-GAP1, · · · ,CSI-GAPN ], denoted as MSIM and CSIM ,
respectively.

For the type-1 fuzzy-set module, the parameters of month
M are denoted as PT1MM (P1 and P2 in T1-MMF, Eq. 10)
and PT1CM (P3 and P4 in T1-CMF, Eq. 11), defined in
Eqs. 14.

PT1MM =argmax
P1,P2

OBJ(T1-MMV,MSIM ),

PT1CM =argmax
P3,P4

OBJ(T1-CMV,CSIM ),
(14)

where:

T1-MMV = T1-MMF(MSIM−1, [P1, P2]),

T1-CMV = T1-CMF(CSIM−1, [P3, P4]).
(15)

The T1-MMV states the type-1 momentum membership values
transformed from MSIM−1 by T1-MMF with parameters
P1 and P2. Similarly, T1-CMV states the type-1 contrarian
membership values transformed from CSIM−1 by T1-CMF
with parameters P3 and P4. OBJ is the objective function,
and is defined as:



TABLE I: Performance evaluation of the systems on different strategies

ALL SSS-T1 SSS-T2 SSS-WT1 SSS-WT2
Pre. Ret. Sharpe Pre. Ret. Sharpe Pre. Ret. Sharpe Pre. Ret. Sharpe Pre. Ret. Sharpe

GAP 41% 4.3% 0.497 43% 4.9% 0.569 44% 5.0% 0.572 43% 5.3% 0.592 44% 6.2% 0.698
TRB 42% 3.7% 0.809 42% 4.0% 0.847 43% 3.8% 0.796 42% 4.7% 0.924 43% 4.3% 0.881

(a) Gap (b) 3H3L

Fig. 4: Investment performance and equity curves of the systems on different strategies.

OBJ(MV,SI) =
Mean(SI)
Std(SI)

, (16)

where:

SI = [SIi | MVi > 0.5, i = 1, · · · , length of MV ]. (17)

The OBJ is inspired by the concept of the Sharpe ratio to
consider both the average and variance of performance. In
summary, we search the parameters in T1-MMF and T1-CMF
that transform the SI of the previous month into membership
values and have an optimal selected performance for the
following months.

For the type-2 fuzzy-set module, the parameters of month
M are represented as PT2MM (P1 to P4 in T2-MMF, Eq. 12)
and PT2CM (P1 to P4 in T2-CMF, Eq. 13), defined in
Eqs. 18.

PT2MM = argmax
P1,P2,P3,P4

OBJ(Mid(T2-MMV),MSIM ),

PT2CM = argmax
P1,P2,P3,P4

OBJ(Mid(T2-CMV),CSIM ),
(18)

where:

T2-MMV = T2-MMF(MSIM−1,CSIM−1, [P1, · · · , P4]),
T2-CMV = T2-CMF(MSIM−1,CSIM−1, [P1, · · · , P4]).

(19)

Eq. 18 is quite similar to Eq. 14. However, since the type-2
membership value is a range, we take the midpoints, Mid(·),
to calculate the objective value in Eq. 18.

Note that the parameters are optimized in discrete spaces.
The P1 and P3 are slopes of S-functions and in a search space
of [1+0.2× i | i = 1, · · · , 10]. The P2 and P4 are offsets of
S-functions and in a search space of [0.5× i | i = −5, · · · , 5].
B. Stock Selection Mechanisms

With the optimized parameters, the membership values of
each stock can be determined, providing information for stock
selection in the following trading month. In this section, four
stock selection mechanisms are proposed, including T1, T2,
WT1, WT2, and SSS with the stock selection mechanisms are
named SSS-T1, SSS-T2, SSS-WT1, and SSS-WT2, respec-
tively. Take the GAP as an example. The T1 (T2) mechanism
selects stocks with T1-MMV (T2-MMV) greater than 0.5 for
the GAP Mom strategy, and selects stocks with T1-CMV (T2-
CMV) greater than 0.5 for the GAP Con strategy.

Furthermore, the size of the membership value can not
only select stocks but also assist portfolio management. The
WT1 and WT2 mechanisms are the weighted T1 and T2
mechanisms, defined as follows. For the selected stock i with
a momentum membership value of MMVi, the system set wi

to 2 × (MFVi − 0.5), and the final asset weight invested in
stock i is wi∑

i wi
. The same mechanism applies to contrarian

strategies.



V. EXPERIMENTAL RESULTS

A. Data Usage
In this paper, we investigate the stocks in Taiwan stock

market and apply them to the proposed SSS. There are 1,230
stocks that exist from January 1, 2011 to at least June 30,
2021. To avoid the impact of stock splits and mergers and
capital reductions and increases, we remove stocks with the
highest (lowest) daily price is more than 1.1 times (less than
0.9 times) the previous closing price (since upper limit for
price increases and decreases in one day is ±10%). After data
cleaning, 307 stocks remain in the list of stocks.

As for the investment mechanism, for each strategy (Gap
and TRB), we combine the results of the momentum and
contrarian type strategies to obtain the neutral and compre-
hensive evaluation. In addition, we take the benchmark system
of ALL [22] for comparison, which is widely recognized in
the financial field [23]. The ALL invests in all stocks with
equal weight, considering all stocks as both momentum and
contrarian. Note that we ignore transaction costs in this paper.

B. Performance evaluation
In this section, we evaluate the performance of the proposed

SSS through descriptive statistics and investment results, listed
in Table I. Since the system is designed for stock selection,
the correct selection will result in a profit; therefore, we adopt
precision as a measurement. For the investment measurements,
we adopt the annual return and Sharpe ratio. Fig. 4 presents
the investment results and equity curves of the systems.

In Table I, the columns represent the benchmark system
and the proposed four stock selection systems, including T1,
T2, WT1, and WT2. The rows in the table represent the two
investigated strategies, and the bolded values are the top-2
performances of the strategy (row). Note that the only differ-
ence between T1 and WT1 (T2 and WT2) is the weighting
mechanism, which doesn’t affect the selected stocks, and T1
and WT1 (T2 and WT2) have the same precision.

Experimental results show that the T2 and WT2 have
the best precision of stock selection, and have only slight
improvements over the benchmark system, ALL. However, the
membership value can further assist portfolio management.
Even a small increase in precision can lead to a significant
improvement in investment.

In terms of investment results, the proposed WT1 and WT2
systems are outstanding, with annual returns and Sharpe ratios
ranking in the top-2 of all systems. The WT1 system achieves
the highest annual return of 4.7% and the highest Sharpe ratio
of 0.924 on TRB, outperforming ALL with an annual return of
1.0% and a Sharpe ratio of 0.115. The WT2 system achieves
the highest annual return of 6.2% and the highest Sharpe ratio
of 0.698 on GAP, outperforming ALL with an annual return
of 1.9% and a Sharpe ratio of 0.201.

The same phenomenon can be found in the equity curves
of Fig. 4, where the red and purple curves (WT1 and WT2
systems) gradually separate and lead to others. Furthermore,
the proposed systems suppress ALL, the blue curve, in the
second half of the period.

VI. CONCLUSIONS

In this paper, we propose a stock selection system (SSS)
based on suitability index (SI) and fuzzy-set theory. We first
design position sizing algorithms to extract the characteris-
tics of stocks, SI, which express not only the momentum
and contrarian characteristics but also the suitability for the
strategy. The SI is then transformed by the designed fuzzy-set
modules for stock selection and further investments. Several
stock selection mechanisms are proposed, denoted as SSS-
T1, SSS-T2, SSS-WT1, and SSS-WT2. Furthermore, we adopt
a rolling window mechanism to update system parameters
periodically. Experimental results show that SSS has a slight
improvement in precision, but leads to a significant improve-
ment in investment, since the membership value can further
assist portfolio management. The proposed WT1 and WT2
systems achieve the highest annual returns of 6.2% and the
highest Sharpe ratios of 0.924, outperforming ALL with the
annual return of 1.9% and the Sharpe ratio of 0.201. In the
future, we will examine the uncertainty of the selected stocks
and develop other investment strategies to possibly get a better
performance on the investment.
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