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Abstract—Given a financial time series dataset, one of
the most fundamental and interesting challenges is the
need to learn the stock dynamics signals in the financial
time series data. An essential task is to represent the
time series in line segments which is often used as a
pre-processing step for learning the marketing signal
patterns in financial computing. In this paper, we focus
on the optimization problem of computing the best
segmentations of such time series based on segmented
linear regression models. The major contribution of
this paper is to define the problem of Multi-Segment
Linear Regression (MSLR) of computing the optimal
segmentation of a financial time series, denoted as the
MSLR problem, such that the global square error of
segmented linear regression is minimized. We present
an optimum algorithm named OMSLR, with two-level
dynamic programming (DP) design, and show the opti-
mality of OMSLR algorithm. The two-level DP design
of OMSLR algorithm can mitigate the complexity of
searching the best trading strategies in financial mar-
kets. It runs in O(kn2) time, where n is the length of
the time series sequence and k is the number of non-
overlapping segments that cover all data points.

Index Terms—time-series, segmentation, segmented
linear regression, signal learning and processing, piece-
wise polynomial representation.

I. Introduction
Learning investment or trading signals from financial

market data is one of most fundamental and interesting
research challenges in both academia and industry [1],
[2]. For example, the American hedge fund manager,
Renaissance Technologies has leveraged financial signal
processing technologies in stock trading for a long time.
However, financial time series is difficult to summarize or
to be represented due to its highly non-stationary nature
[3]. For a given financial time series dataset, an initial
processing step of learning the signal patterns is often to
represent the time series in line segments to alleviate data
uncertainty and noise [4].

In a segmentation process, a time series is divided
into k non-overlapping segments, and each segment is
represented by a model to describe data points in the
approximation segments. The segment representation is
measured using error functions depending on the require-
ments of their applications. Actually, time series segmen-

tation is widely for dimensionality reduction purposes in
economics [5], engineering [6] and science [7].

Time series segmentation has been extensively discussed
in different domains and various models, which has re-
sulted in many works such as the works in [8]. In 1961,
the first version of time series segmentation problem is
reported in [9] and a dynamic programming (DP) al-
gorithm with time complexity O(kn3) is also described.
Time series segmentation also arises in data mining ap-
plications. The article [10] gives a review on applications
of segmentation methods in data mining research area.
The segmentation methods are classified into three cat-
egories, including sliding windows, bottom-up, and top-
down methods. The experimental comparisons showed
that the bottom-up method results in better performance
than other methods [10].

In the past few years, only a few algorithms [11], [12],
[13] have been proposed to reduce the time complexity
of the time series segmentation problem. The objective
is to simplify represent of large scales time series data.
The Piece-wise Linear Approximation (PLA) [11] is a
widely used approach for the segmentation task. Acharya
et al., [13] presented near-linear time algorithms that
achieve a significant improvement compared to the DP
approach on large time series. The interested readers can
refer to Esling and Agon [8] who present a survey on
approximation segmentation of time series. To the best
of our knowledge, the previous approaches have not ad-
dressed the problem of optimum segmentation of financial
time series. Most of them discussed segmentation methods
in terms of approximation representation [11], on-line
processing [12] and their time complexity [13]. Also, most
of the approaches mentioned are suboptimal. Due to the
high computational complexity, optimal algorithms can
not be easily applied to real-time applications.

In this paper, we are interested in the open question [14],
how to best choose k, the optimal number of segments used
to represent a particular time series. For financial trading
strategies, k is a measure of number of times of changes in
market trend. It is also an indicator of how many times to
trade in the market while receiving a reasonable amount
of trading profits [15]. Instead of answering the open



question directly, we start with focusing on minimizing
global square error for a given k, and also deriving the
optimal representation of each of the k segments.

Firstly, we formulate the Multi-Segment Linear Regres-
sion (MSLR) problem and define the global square error
as the performance index. Then, we present the Optimal
Multi-Segment Linear Regression (OMSLR) algorithm,
the two-level DP approach for producing the globally
optimal segmentation. Finally, we show the optimality of
the proposed OMSLR algorithm. The time complexity of
the OMSLR algorithm is O(kn2), where n is the length
of the time series and k is the number of non-overlapping
segments that cover all data points. To the best of our
knowledge, this work is the first to investigate the global
optimal segmentation problem in time series processing,
especially for financial time series.

This paper is organized as follows. We provide a brief
description of the related work on time series segmentation
in Section II. In Section III we present the formulation of
segmentations as an optimization problem, named MSLR
problem. In Section IV we present the OMSLR algorithm
and show the optimality of the proposed OMSLR algo-
rithm. The segmentation experiments are presented in
Section V, and the results and future work are summarized
in Section VI.

II. Related Work
In this section, the well known classical time series

segmentation algorithms are described, and the perfor-
mance analysis of the time complexity of these algorithms
are also reported. Time series segmentation is an impor-
tant direction in knowledge discovery research and has
been extensively discussed from a data-mining perspective.
There are at least two processing ways to represent a
time series with straight lines, including linear interpo-
lation approaches and line regression approaches [10]. The
linear interpolation [16] that represents the data points
by simply connecting the two endpoints of each seg-
ment and generates continuous line segments. And linear
regression approaches that approximate a line segment
by representing the best fitting line in the least square
error and produce a set of non-overlapping segments [11].
However, the regression approaches result better in quality
of the approximating segments generally [17]. Also, basic
classification of these algorithms can be divided into two
categories included on-line and off-line algorithms [18].

In this article we focus on the line regression approaches
and off-line segmentation algorithms. The interested read-
ers can refer to [19] for on-line methods of time series
segmentation. The first group of algorithms is optimal so-
lutions and the second one is heuristic. The main difference
between two groups is heuristic algorithms are designed
by obtaining the best time series segmentation such that
the maximum error (global square error) for any segment
is less than the user-specified threshold as a per-defined
initial parameter. Most of existing segmentation solutions

approximate segments based on the user-specified error.
The optimal solutions are proposed to obtain the best
segmentation with the minimum maximum error using
given k segments. We discuss the classical heuristic algo-
rithms first, and then the optimal solutions of time series
segmentation are described.

Note that different fitness error functions should be
used by the different approximate segmentation methods
and applications, such as a regression, decision trees, and
neural networks [20]. Depending on the application, the
goal of the approximate segmentation is used to locate
stable periods of time, to identify stock trading, or to
simply represent the original time series into an approx-
imation line. Our algorithm and assumptions are based
on segmented liner regression models, the fitness error
function in the present paper is measured by using the
square error of each segment i.g.,

∑n
i=1[yi − yi]

2. Thus,
the naive computation complexity of the residual sum of
squares over a given segment interval should take linear
time O(n).

A. Heuristic algorithms
Most popular of heuristic algorithms for time series

segmentation usually can be classified into one of the
following categories of algorithms [10]: 1) Bottom-up al-
gorithm, 2) Top-down algorithm, 3) Sliding windows algo-
rithm; unlike the previous two algorithms, it belongs to the
category of the on-line algorithms, the detailed design of
the Sliding windows algorithm should be referred to [10].

The Bottom–up algorithm is a greedy merge approach,
and it is fast. Firstly, it starts by dividing the original time
series, of length n, into n − 1 segments. In this step, all
the approximation errors of each segment are 0. Next, the
pairs that cause the smallest increase in the fit error are
consequently merged into a bigger segment based on the
comparison of each pair of consecutive segments, including
left and right segments. The algorithm iteratively merges
the least fit error pair until the pre-defined stopping
criteria is met, such as approximation error is less than the
user-specified threshold. The time complexity of bottom–
up algorithm is O(Ln) [10], where n is the number of
points of the time series and L is the average length of the
representing segments (i.g., the average segment length is
L = n/k).

The Top–down algorithm is also a greedy approach
based on a divide and conquer design, it starts with the
non-segmented time series (i.g., there is one major segment
at initial step) and it introduces a new segment at each
division step. In each iteration, it searches the best break-
ing point for placing the boundary to split the original
segment into two segments based on the consideration of
all possible breaking points. The process of division into
two new segments is repeated until all the segments have
approximation errors below the user-specified threshold.
The division procedure is repeated without effect on the
location of the breaking point determined in the previous
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iteration. The computational complexity is O(kn2), where
n is the number of points of the time series and k is the
number of segments [10].

According to the literature [10], the Bottom–up algo-
rithm can result in the lowest deviation in approximation
error. Both methods are suboptimal approaches that may
not be suitable for our problem.

B. Optimization algorithms

This optimal segmentation problem has been studied
in 1961, the first version of time series segmentation
problem is reported by Bellman [9] and a DP algorithm
with time complexity O(kn3) is presented [21]. Terzi and
Tsaparas [22] presented a O(kn2)-time implementation is
possible for the constant segmentation problems. It is to be
noted that an optimal solution of the DP algorithm with
O(kn2) time complexity is presented in [22], the fit error
is measured by using the mean or median errors. Without
a doubt this solution consists of a DP algorithm and can
be computed in time O(kn2). Guha et al., [23] presented a
near optimal segmentation algorithm with provable error
bounds, variations of this error bounded error segmenta-
tion problems have been studied extensively [24]. Another
approach is to consider autoregression (AR) models based
on placing prior distributions on the number of change
points.

Compared to previous works, in this paper it is shown
that a novel two-level DP design algorithm offers a direct
approach to the determination of an optimal fit error (i.g.,
global square error) based on segmented liner regression
models and results in the time complexity O(kn2) for
the time series segmentation problem. We have applied
this algorithm to the financial time series segmentation
for financial trading strategies. Researchers consider the
financial time series segmentation problem in difference
aspects, such as Chung et al., [25] proposed a genetic
algorithm for this problem, a segmentation method based
on the maximum or minimum turning points of a financial
time series is presented in [26], and the clustering [27]
representation approaches is also studied.

III. Formulation of Problem MSLR

A formal definition of the Multi-Segment Linear Regres-
sion (MSLR) problem is described in this section.

Given a time series X = {x1, x2, . . . , xn} and an integer
k, the objective to the MSLR problem is to partition X
into k contiguous and non-overlapping segment intervals,
i.e., [li−1, li) and [lk−1, lk], where l0 = 1, lk = n, 1 ≤ li ≤
n, 1 ≤ i ≤ k−1, li ∈ N, such that the multi-segment linear
regression square error, ψ2(1, n|ϕk(Xn)), with respect to
the k-segment partition ϕk(Xn) = {1, l1, . . . , lk} is min-
imized. Note that ψ2(1, n|ϕk(Xn)) is also denoted as the

Global Square Error of the multi-segment linear regression
representation, or GSE for short. In other words, we have

ψ2(Xn|ϕk(Xn))

=

k−1∑
i=1

σ2
(li−1,li−1) + σ2

(lk−1,lk)

=ψ2(Xlk−1−1|ϕk−1(Xlk−1−1)) + σ2
(lk−1,lk)

,

(1)

where σ2
i,j =

∑j
m=1(xm − µ(i, j,m))2 and µ(i, j,m)) =

βi,j × m + αi,j , i ≤ m ≤ j. More specifically, µ(i, j,m))
is the linear regression model [28] of the time series Xn

on the interval [i, j] and σ2
i,j is the residual, also denoted

as the square error, of linear regression. And αi,j and βi,j
are the linear regression parameters. Here αi,j , βi,j and
σ2
i,j all can be computed in O(1) time using the following

iterative equations, ∀ j, j ≥ i.

αi,j = x̄i,j − βi,j × t̄i,j , (2)

βi,j =

∑j
m=i(xm − x̄i,j)(m− t̄i,j)∑j

m=i(m− t̄i,j)2
(3)

σ2
i,j =

j∑
m=1

(xm − µ(i, j,m))2

=

j∑
m=1

(xm − βi,j ×m− αi,j)
2,

(4)

where t̄i,j = (i+j)
2 , x̄i,j =

∑j
m=i xm

j−i+1 , and µ(i, j,m) = βi,j ×
m + αi,j , i ≤ m ≤ j. It can be shown that the above
equations can be rewritten into iterative forms such that
Algorithm 1 can be computed in O(n2) time for all 1 ≤ i ≤
j ≤ n. The detailed derivation of the equations, including
Equation 2, 3 and 4 can be found in the Appendix A, thus
we have the following Lemma 1.

Lemma 1. The running time of Equation 2, Equation 3
and Equation 4 are all constant time O(1) for a time series
X = {x1, x2, . . . , xn}.

Therefor, we have the Lemma 2 as follows.

Lemma 2. The running time of the Algorithm 1 is at most
O(n2) for a time series X = {x1, x2, . . . , xn} and n is the
number of data points of Xn.

Proof. The proof is based on Lemma 1, and it is obviously
that the time complexity of the Algorithm 1 is O(n2), n
is the length of a given time series.

Given a fitness error function, the goal is to find the
segmentation of the sequence and the corresponding repre-
sentatives that minimize the fit error in the representation
of the underlying data points. We call this problem a
segmentation problem. As we mentioned before, in this
paper the fit error is measured by using square error of
each segment.
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Algorithm 1 Matrix σ2

Input:
X ← a time series data set
n← the length of X

Initialize:
αi,i ← xi
βi,i ← 0
σ2
i,i ← 0

1: /* for computing the matrix σ2 */
2: for i = 1, 2, 3, . . . n do
3: for j = i+ 1, . . . n do
4: t̄i,j+1 = (i+j+1)

2

5: x̄i,j+1 =
(j−i+1)x̄i,j+x(j+1)

(j−i+2)

6: αi,j ← the derivation of Equation 2
7: βi,j ← the derivation of Equation 3
8: σ2

i,j ← the derivation of Equation 4
9: end for

10: end for
Output: matrix σ2

IV. OMSLR algorithm
We present the OMSLR algorithm for the MSLR prob-

lem as follows. Given a time series X = {x1, x2, . . . , xn}
and an integer k, the algorithm OMSLR iteratively seg-
ments the time series Xj = {x1, x2, . . . , xj}, where 1 ≤
j ≤ n, into i segments, starting with i = 1 to i = k.
Since Equation 1 is an iterative function, we can compute
a matrix M to maintain the square error of possible seg-
ments by referring to the matrix σ2. Based on the concept,
we design a two-level DP Algorithm 2 to compute the
matrix M , in which M [i, j] = (γi,j , ρ

2
i,j)

1, for i = 1 → k,
as a representation of the best way of partitioning Xj

into i segments ∀ j, 1 ≤ j ≤ n. Here, γi,j , 1 ≤ γi,j ≤ j
denotes the starting point of the last segment of ϕ̂i(Xj)
and the variable ρ2i,j is the global square error of i-segment
partition of Xj based on ϕ̂i(Xj).
γi,j and ρ2i,j can be computed by the following equations.

γi,j = arg min
(i−1)d<m≤j−d

{ρ2(i−1),m + σ2
(m+1),j};

ρ2i,j = ρ2(i−1),(γi,j−1) + σ2
γ(i,j),j

.
(5)

In Equation 5, the d is a constant value used to control
the minimum size of a segmentation representation, the
default value of d is 2.

With the matrix M and segmentation index γi,j , we
can backtrack an i-segment partition on Xj denoted as
ϕ̂i(Xj) = {1, l̂(i,j)1 , . . . , l̂

(i,j)
i }, by the following equations.

l̂(i,j)m =

{
j,m = i;

γ
(m+1),(l̂

(i,j)

(m+1)
−1)

, 1 ≤ m ≤ i− 1.

1Note that the pair of values (γi,j , ρ
2
i,j) stored in M [i, j] is a tuple

that is used to store multiple items in a single variable and also is a
very common data structure in modern programming languages.

In specific, the k-segment partition of Xn, denoted as
ϕ̂k(Xn) = {1, l̂1, . . . , l̂k}, is computed as follows.

l̂i =

{
n, i = k;

γ(i+1),(l̂(i+1)−1), 1 ≤ i ≤ k − 1,

where xl̂0 = x1 and xl̂k = xn. The algorithm OMSLR,
given as Algorithm 2, provides an optimal solution for the
MSLR problem. In the following, we show that ϕ̂k(Xn) is
an optimal solution of the MSLR problem.

Theorem 1. Given a time series Xn = {x1, x2, . . . , xn}
and the number of segments k, the i-segment partition
ϕ̂i+1(Xj),∀ j, 1 ≤ j ≤ n,∀ i, 1 ≤ i ≤ k as computed by
Algorithm OMSLR is optimum.

Proof. We give a sketch of the proof and prove Theorem
1 by contradiction. We skip the case k = 1, it is a natural
linear regression. For the case k = 2, it is obviously to see
that ∀ j, 1 ≤ j ≤ n, ϕ̂2(Xj) is optimum, since Algorithm
OMSLR enumerated all the feasible solutions.

In the induction step, we assume that ∀ j, 1 ≤ j ≤ n,
ϕ̂i(Xj) is optimum. To show that ϕ̂i+1(Xj) is also opti-
mum, ∀ j, 1 ≤ j ≤ n, we assume that there exists an
integer τ, 1 ≤ τ ≤ n, such that ϕ̂i+1(Xτ ) is not optimum.
Let ϕ∗i+1(Xτ ) = {1, l∗1, . . . , l∗i , l∗i+1 = τ} be the optimum
(i+1)-segment partition ofXτ . Then we have the following
equation:

ψ2(Xτ |ϕ̂i+1(Xτ )) > ψ2(Xτ |ϕ∗i+1(Xτ )). (6)

The induction assumption says that the i-segment parti-
tion, ϕ̂i(Xl∗i −1) is optimum, thus it implies the Equation
7:

ψ2(Xl∗i −1|ϕ∗i (Xl∗i −1)) = ψ2(Xl∗i −1|ϕ̂i(Xl∗i −1)), (7)

and Algorithm OMSLR also guarantees the Equation 8.

ψ2(Xτ |ϕ̂i+1(Xτ )) ≤ ψ2(Xl∗i −1|ϕ̂i(Xl∗i −1)) + σ2
(l∗i ,τ)

= ψ2(Xl∗i −1|ϕ∗i (Xl∗i −1)) + σ2
(l∗i ,τ)

= ψ2(Xτ |ϕ∗i+1(Xτ ))

(8)

Equation 7 and 8 imply that the assumption of Equation
6 is a contradiction. Thus, we have Theorem 1.

To analyze the computational complexity of algorithm
OMSLR, the average case will be assumed. The time
complexity of the algorithm OMSLR is O(kn2). Next we
give the detailed proof of Theorem 2.

Theorem 2. The running time of the algorithm OMSLR
is at most O(kn2) for Xn = {x1, x2, . . . , xn} and k is the
number of non-overlapping segments of Xn.

Proof. The following considerations will be taken into
account for the proof of Theorem 2. All the points that are
processed to obtain the matrix σ2, it is required an order
of complexity O(n2) that shown in Lemma 2. In Algorithm
2, the computational complexity of processing each i-
segment by backtracking the matrix σ2 and maintaining
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Algorithm 2 OMSLR(X, k, σ2)
Input:
X ← a time series data set
k ← the number of segments
σ2 ← the error matrix σ2 form Algorithm 1

Initialize:
gse← ∅ /* the Global Square Error */
γi,j ← 0
ρi,j ← 0
n← the length of X
M ← 0

1: /* for 2-segment linear regression (k = 2) */
2: for j = 1, 2, . . . n do   
3: γ1,j = argmin(1<m≤j){σ2

1,m + σ2
(m+1),j}

4: ρ21,j = σ2
1,(γ1,j−1) + σ2

γ(1,j),j

5: M [1, j] = (γ1,j , ρ
2
1,j)

6: end for
7: /* for k-segment linear regression (k ≥ 3 )*/
8: for i = 3, . . . k − 1 do
9: for j = 1, 2, . . . n do   

10: γi,j = argmin(1<m≤j){ρ2i−1,m + σ2
(m+1),j}

11: ρ2i,j = ρ2(i−1),(γi,j−1) + σ2
γ(i,j),j

12: M [i, j] = (γi,j , ρ
2
i,j)

13: end for
14: end for
15: /* backtrack γ for the pivots from the matrix M */
16: pivot_set← {}
17: p_seg ← k
18: p_cur ← n
19: while p_seg > 0 do
20: pivot← γp_seg,p_cur

21: push pivot into pivot_set
22: p_cur ← pivot− 1
23: p_seg ← p_seg − 1
24: end while
25: gse← ρ2k,n
Output: pivot_set, gse

the optimal solution in the matrix M for each i-segment
is O(kn2), as shown in Algorithm 2 (Line:8 → Line:14).
Without doubt, deriving the optimal k-segment partition
implies that the time complexity of seeking the pivot point
is O(k), as shown in Algorithm 2 (Line:16 → Line:24).
Finally, taking into account the order of computational
complexity of the all operations would be O(n2) + O(kn2)
+ O(k) ≡ O(kn2).

V. Experimental results
This section shows the time series datasets considered to

be evaluated in the different methods, including OMSLR,
Bottom–up (BU) and Brute-force (BF) algorithm. And the
experimental settings and the results are also described.
These three methods has been implemented by python
3.9 and all the experiments were run using an Intel(R)

Core(TM) i7-870K CPU at 3.70 GHz with 128 GB of
RAM. These datasets, python code of the algorithms
and the experimental results can be accessed publicly at
https://github.com/CSCLabTW/TimeSeriesSeg.

A. Datasets used
The performance of OMSLR has been evaluated and

compared to other two algorithms whose performance
analysis has been evaluated as well. For this purpose, sev-
eral synthetic and real-world financial time series datasets
have been used.

1) synthetic datasets that formed by a random func-
tion, range[0, 100], to which random noise (± 5) can be
added to produce an infinite number of datasets. In this
analysis, we have considered two observation groups, the
first set contains 10 series datasets, each has a length of 80
observation points. And another dataset contains a length
of 1,000 observations.

2) stock datasets from financial applications, including
two different series of S&P 500 index price data; 1. First
one is a small size sample that contains 42 data points,
and spans a period from 2008-08-01 to 2008-09-30 selected
from historical daily price data. 2. Second one is S&P 500
index historical 1-minute price data from 2010-07-01 to
2010-07-07. The dataset contains a length of 4,174 points.
Note that the 1-minute price dataset is private, our public
datasets do not include this one.

B. Performance measures
1) synthetic datasets for optimality validation: We pro-

vide an experimental evaluation of these algorithms, i.e.,
our OMSLR, BF and the BU algorithm, for examining
the performance in terms of running time, Global Square
Error (GSE) and the various value of k. GSE is defined
in Section III. And BF method is used to give optimal
solutions, as ground truth solutions in performance evalua-
tion. To demonstrate the optimality of OMSLR’s solution,
the comparisons between the ground truth and OMSLR’s
solution are illustrated.

In the first experiment, we focus on analyzing the opti-
mality of OMSLR’s solution and comparing these methods
on parameters, k = 4, n = 80. Table I shows the results of
10 synthetic series datasets. In Table I, we present simu-
lation evidence to show that the GMS values of the two
methods (i.g., BF and our OMSLR algorithm) are optimal,
the results are consistent with the Theorem 1 obtained.
The performance of BU algorithm is also evaluated. The
GSE threshold is setting to the optimal GSE obtained by
the BF solution, the number of representation segments
by BU algorithm is listed in Table I. It implies that BU
algorithm requires more segments than the optimization
solution requested to fit the criteria. The GSE granted by
BU algorithm is also listed in Table I, all results meet the
GSE criteria obtained by the BF solution.

In the second experiment, we show that the performance
analysis of varies k value in the large sample size scenario.

5
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TABLE I: The optimality of OMSLR, Bottom-up (BU)
and Brute-force (BF) algorithm for 80 data points, k = 4

no. GSE by
BF

GSE by
OMSLR

k by
OMSLR

k by
BUa

GSE by
BUb

1 9.4866 9.4866 4 6 8.3408
2 8.7527 8.7527 4 5 8.7527
3 10.4896 10.4896 4 7 10.055
4 6.7802 6.7802 4 9 6.6073
5 7.7435 7.7435 4 8 7.4235
6 7.6787 7.6787 4 9 7.2568
7 6.7738 6.7738 4 8 6.3662
8 8.6074 8.6074 4 6 8.5387
9 9.9907 9.9907 4 7 9.4988
10 7.8571 7.8571 4 6 7.6869
a The number of segments is represented by BU algorithm when

the fit error threshold is setting to the optimal GSE obtained by
the BF solution.

b The fit error threshold to BU algorithm is setting to the optimal
GSE obtained by the BF solution.

TABLE II: The running time evaluation in 1,000 data
points, k = 1→ 10

k OMSLR Brute-force Bottom-up

1 4.2661s 0.6886s 0.17439s
2 4.4901s 384.2674s 0.13377s
3 4.6303s 145077.2859sc 0.13347s
4 4.8120s N/A 0.13196s
5 4.9905s N/A 0.13233s
6 5.1748s N/A 0.13194s
7 5.3544s N/A 0.13103s
8 5.5345s N/A 0.13127s
9 5.7158s N/A 0.13280s
10 5.8947s N/A 0.13327s
c it is more than 40 hours.

We compare the running time of calculating GSE by
OMSLR, BF and BU algorithm for each k from 1 to 10.
Table II shows the experimental results, it demonstrates
that BU algorithm preforms the better performance than
other two algorithms in every experiment. And the run-
ning time of OMSLR increased slightly. Compared to
other algorithms, BF algorithm needs more than 40 hours
to gain an optimal solution when k is only setting to 3. It
meets our expectations. When BU algorithm performs the
1-segment representation, the running time of the segment
representation is more than others. The reason for the
phenomenon is that BU algorithm is a greedy merge based
algorithm, more merged operations require less computing
time.

2) financial time series applications: We provide an
experimental evaluation of the two algorithms, i.e., our
OMSLR and the BU algorithm [10]. In this experimental
results, we examine the performance in terms of Global
Mean Square Error (GMSE), with respect to the value of
k. The two results are summarized in Fig 1.

In the first experiment, we compare the step-by-step
segment partition as k varies from 2 to 5 in Fig. 1 (a). For
illustration purposes, we plot the time series with small

(a) The segmentations of OMSLR and BU methods

0 50 100 150
K

0

10

20
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40
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SE

Bottom Up
OMSLR

(b) The comparison of GMSE

Fig. 1: The experimental results.

sample size. In Fig. 1 (a), it is shown that OMSLR has
smaller GMSE than the BU algorithm. The data contains
42 data points, and spans a period from 2008-08-01 to
2008-09-30 selected from the historical daily price data.
It also shows that OMSLR always maintains optimality
in partitioning the time series into multi-segment linear
representation for each value of k.

In the second experiment, we focus on analyzing the
relationship between k and GMSE with a large sample
size. We use the historical 1-minute price data with a total
of 1,560 data points. We compare the GMSE calculated
by OMSLR and BU algorithm for each k from 1 to 200.
Fig. 1 (b) demonstrates that GMSE generated by the two
algorithms both decreases monotonically, and sharply at
the beginning.

Therefore, a searching method can be designed for
locating the best value of k with a given GMSE bound
since the curve is a monotonically decreasing function.
Compared to BU algorithm, a much smaller number of
segments is required for algorithm OMSLR to find a multi-
segment linear regression representation of the given time
series to satisfy a given GMSE bound.
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VI. Conclusion and Future work
In this paper, we proposed a new segmentation algo-

rithm that successfully reduces the computational com-
plexity of the classic optimal method from O(kn3) to
O(kn2). We study the problem of optimal segmentation of
financial time series based on segmented linear regression
models. We present the OMSLR algorithm based on the
novel two-level DP design. We show that the OMSLR
algorithm is optimum with time complexity O(kn2). We
also demonstrate its application in analyzing financial
time series. The representation generated by the OMSLR
algorithm may be fed into other intelligent applications,
e.g., to predict future trend of a financial market. The
algorithm may also find further applications. In the future
work, we will use it as a benchmark for other stock
trading algorithms. And the on-line version of the OM-
SLR algorithm will be conducted to be used in real-time
stock trading. We will also use the OMSLR algorithm in
processing data of other time-critical application domains,
such as medical and digital health applications.
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Appendix A

The derivation of αi,j , βi,j and σ2
i,j.

Note that we have αi,j , βi,j and σ2
i,j as follows.

αi,j = x̄i,j − βi,j × t̄i,j

βi,j =

∑j
m=i(xm − x̄i,j)(m− t̄i,j)∑j

m=i(m− t̄i,j)2

σ2
i,j =

j∑
m=1

(xm − µ(i, j,m))2

=

j∑
m=1

(xm − βi,j ×m− αi,j)
2,

where t̄i,j = (i+j)
2 , x̄i,j =

∑j
m=i xm

j−i+1 , and µ(i, j,m) = βi,j ×
m + αi,j , i ≤ m ≤ j. We can rewrite the above equations
into iteration form as follows.

t̄i,j+1 =
(i+ j + 1)

2

x̄i,j+1 =

∑j+1
m=i xm

j − i+ 2
=

∑j
m=i xm + xj+1

j − i+ 2

=
x̄i,j(j − i+ 1) + xj+1

j − i+ 2

αi,j+1 = x̄i,j+1 − (βi,j+1 × t̄i,j+1).

To compute βi,j+1, we define pi,j and qi,j , thus βi,j = pi,j

qi,j
,

where,

pi,j =

j∑
m=i

(xm − x̄i,j)(m− t̄i,j)

qi,j =

j+1∑
m=i

(m− t̄i,j+1)
2.

Then, we derive iterative formula of computing pi,j in
Equation 9 and qi,j in Equation 10. Note that

∑j+1
m=i(m−

t̄i,j+1) = 0. To compute σ2
i,j+1 from σ2

i,j , we define

ζi,j =

j∑
m=i

xm2 ,

ξi,j =

j∑
m=i

m2,

δi,j =

j∑
m=i

xmm,

ηi,j = σ2
i,j =

j∑
m=i

(xm − βi,j ×m− αi,j)
2.

We then have the following equations,

ζi,j+1 = ζi,j + xm2 ,

ξi,j+1 = ξi,j +m2,

δi,j+1 = δi,j + xmm.

We derive iterative formula of computing ηi,j+1 in Equa-
tion 11.
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