
IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY 1

Time-Critical Data Dissemination under Flash Crowd Traffic

Chi-Jen Wu ID , Member, IEEE and Jan-Ming Ho, Senior Member, IEEE
How to rapidly disseminate a large-sized file to many recipients in flash crowd arrival patterns is a fundamental

challenge in many applications, such as distributing multimedia content. To tackle this challenge, we present
the Bee , which is a time-critical peer-to-peer data dissemination system aiming at minimizing the maximum
dissemination time for all peers to obtain the complete file in flash crowd arrival patterns. Bee is a decentralized
system that organizes peers into a randomized mesh-based overlay, and each peer only works with local knowledge.
We introduce the slowest peer first strategy to boost the speed of dissemination and present a topology adaptation
algorithm that adapts the number of connections based on upload bandwidth capacity of a peer. Bee is designed to
support network heterogeneity and deals with the flash crowd arrival pattern without sacrificing the dissemination
speed. We also show the lower bound analysis of the data dissemination problem, and present the experimental
results to demonstrate that the performance of Bee can roughly approximate the lower bound of the data
dissemination problem under flash crowd traffic.

Index Terms—peer-to-peer, content distribution, flash crowd

I. INTRODUCTION

HOW to rapidly distribute a large file in flash crowd
arrival patterns [1] has become more and more

attractive in the networking research community and mo-
bile cloud computing applications, such as the emerging
techniques for mobile content caching [2] and fast de-
livery [3] or updating the software patches of Massively
Multiplayer Online Games (MMOG) [4] and operating
systems [5]. Suppose that a large file is initially held by a
single server, we have to disseminate it to other n peers,
and it is the dissemination problem we defined: how to
minimize the maximum dissemination time for all peers
to obtain the complete file, especially in heterogeneous
and dynamic networks? Furthermore, when a popular
content is released, the peer arrival rate results in a flash
crowd [1] as shown in fig 1. It should increase the difficulty
of system design and significantly impact on the system
performance.

Under flash crowd traffic, several characteristics make
it not easy to design a scalable system that organizes re-
sources, such as computing power and network bandwidth,
for disseminating content to a large number of clients,
including: 1) Scalability: the number of participating
nodes must be in the thousands or even more. 2) Churn:
the behavior of participating users is characterized by the
dynamics with which the peers join, leave, and rejoin the
system at an arbitrary time, making it difficult to maintain
an overlay network among a large number of participators.
3) Heterogeneity: the resources, such as bandwidth,
computing power of participating peers are heterogeneous,
which make it difficult to make a schedule in polynomial
time. 4) Network dynamic: routers, links in the Internet
and the peers may fail, incurring more communication cost
and longer transmission time to deliver content. Thus, it
is not easy to maintain a large-scale data dissemination

Chi-Jen Wu is with the Department of Computer Science and
Information Engineering at Chang Gung University, Taiwan. (e-mail:
cjwu@mail.cgu.edu.tw).

Jan-Ming Ho is with the Institute of Information Science,
Academia Sinica, Taiwan. (e-mail: hoho@iis.sinica.edu.tw).

蔭໒ 1

Online Users

50

200

600

1800

3600

9000

14000

30000

32000

35000

36000

35500

30000

12000

5000

3000

1200

800

450

300

270

230

200

170

150

120

90

75

60

55

40

36

27

22

21

18

15

11

9

7

4

3

2

1

P
ee

r A
rr

iv
al

 R
at

e

10,000

20,000

30,000

40,000

Time

flash crowd arrival
Pattern

�1

Fig. 1: An example of a flash crowd arrival pattern.

system that minimizes the maximum dissemination time
under flash crowd traffic.

A famous peer-to-peer (P2P) content delivery protocol
is the BitTorrent [6], which is one of the pioneers of
content dissemination. However, BitTorrent is designed
to minimize the dissemination time of each peer ego-
istically. On the other hand, previous studies, including
Slurpie [7], Bullet [8], M2M-ALM [9] and ReCREW [10],
O-Torrent [11], [12] and [13], have proposed to construct
and maintain an overlay network of multiple trees, rings,
or a random mesh to deliver content from a single server.
In the design of these P2P protocols, content are usually
divided into m parts of equal size, each being called a
block. A peer may download any one of these blocks
either from the server or from a peer who has downloaded
that block. Besides, many researchers, including [14], [15],
[16], [17], [18], have studied the performance of these
P2P protocols, and have shown that the P2P protocol
is both efficient and scalable, even it lacks a centralized
coordination and scheduling mechanisms. Nevertheless,
these previous studies related to content dissemination do
not force on minimizing the maximum dissemination time
for all requesting peers under flash crowd traffic.

In this paper, we investigate the data dissemination

https://orcid.org/0000-0002-6468-0952

IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY 2

problem that arises as an attractive application in the cur-
rent Internet, such as content caching in [19], fast content
delivery among mobile edge nodes [20], updating software
patches or distributing multimedia content, especially in a
flash crowd scenario. More specifically, we investigate and
address the following two questions:

i) what is the lower bound of the data dissemination
problem?

ii) how to design a distributed system that can achieve
or approach to the lower bound of the data dissemination
problem under flash crowd traffic?

We begin by giving a formal definition of the data
dissemination problem. We then derive the lower bound
of the ideal dissemination time both in homogeneous and
heterogeneous networks.

Then we present Bee, a time-critical P2P data dissemi-
nation protocol to address the data dissemination problem
under flash crowd traffic. Bee is designed from a best-effort
service concept, to increase the system throughput and
peer concurrency. Based on the best-effort service concept,
a peer allocates uploading bandwidth for all its neighbors
and attempts to serve all of them. Peers in Bee begin by
self-organizing into a random overlay mesh and download
blocks from their neighbors as soon as possible.

We present the slowest peer first strategy and the
topology adaptation algorithm to maximize the speed of
content dissemination. Based on the slowest peer first
strategy, a peer transmits blocks to the higher priority
neighbors that have the fewest number of downloaded
blocks. The topology adaptation algorithm is for a peer to
adapt the number of connections to neighbors based on its
uploading capacity. Our experimental results demonstrate
that the maximum dissemination time of the Bee can
approximately approach the lower bound of the data
dissemination problem. To the best of our knowledge, this
work is the first that studies the effects of P2P protocols
with respect to minimizing maximum data dissemination
time under flash crowd traffic.

The rest of the paper is organized as follows. In Sec-
tion II, we first define the data dissemination problem.
Section III describes an overview and design details of the
Bee system. We give a detailed analysis of Bee in Sec-
tion IV. Section V explains our simulation methodology
and presents the performance results of the simulation
study. In Section VI, we discuss related work. Section VII
concludes this paper with a summary of the main research
results of this study.

II. Data Dissemination Problem
In this section, we formally define the data dissemina-

tion problem and show the lower bound of this problem.
Let us consider the problem of disseminating a file F

to a set of n peers, N = {1, 2, . . . , n}. We assume that a
peer leaves the system once completely receiving the file.
Let S be the server (we called it seed in the rest of this
paper) that has the file F in the beginning, and let Size(F)
denote the size of file F in bytes. Each peer i ∈ N in this
system has its upload capacity Ui and download capacity

Di. Ui and Di respectively represent the upper bound of
the upload and download bandwidth for peer i. We also
assume that Ui ≤ Di, to model the Internet technologies.
Let ti(F) denote the time it takes for peer i to download
the complete file F . Note that ti(F) denotes the time
interval starting at the time peer i sends its request to the
server and ending at the time it receives the entire file F .
Before formally defining the data dissemination problem,
we define the following two performance metrics first.

Definition 1 (Average Dissemination Time, ADT(F)).

ADT (F) =
1

|N |
∑
i∈N

ti(F).

Definition 2 (Maximum Dissemination Time, MDT(F)).

MDT (F) = max{ti(F)}, i ∈ N .

Assume that the server S and all n peers exist in the
system from time t = 0, then MDT (F) is the time it takes
for all peers to finish receiving the complete file F . Now
we define the data dissemination problem as follows.

Definition 3 (Data Dissemination Problem). Given a
server S and n peers in the system, and each peer i has
the upload capacity Ui and download capacity Di, where
i = {1, 2, . . . , n}, the data dissemination problem is to find
a transmission mechanism M to minimize the MDT (F).
According to the Definition 2, the data dissemination
problem can be treated as a min-max problem as follows.

min{max{ti(F)}}. (1)

Note that the data dissemination problem is somewhat
different from the broadcast network problem [21] where a
node is required to broadcast a message to all other nodes
as fast as possible. In the broadcast network problem, a
node can either transmit a message to or receive a message
from other nodes, but not both. Many researchers have
studied the broadcast network problem in homogeneous
networks for more than 40 years [21]. The broadcast
network problem becomes NP-hard [22] in heterogeneous
networks, and Deshpande et al. [23] proposed two cen-
tralized heuristics for the broadcast network problem in
heterogeneous networks. In the data dissemination prob-
lem, however, a node can transmit and receive messages
simultaneously. Goetzmann et al. [24] show that the data
dissemination problem becomes NP-hard for equal upload
and download capacities per peer. Thus, it also is more
difficult to analyze algorithmic complexity of the data
dissemination problem in heterogeneous networks.

A. Ideal Dissemination Time (Lower Bound)
In this section, we focus on studying the lower bound

of the data dissemination time, denoted as the ideal
dissemination time in homogeneous or heterogeneous
networks. We assume that peers are highly cooperative
and altruistic. So that each peer is willing to forward
data to other peers as fast as possible (best-effort service
concept) and to benefit other peers than itself.

IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY 3

Let’s denote the actual amount of data uploaded by peer
i as fi, where fi ≤ Ui × ti(F) and the peer i receives
in return as ri, where ri ≤ Di × ti(F). Without loss
of generality, we may assume that the total amount of
download data must be equal to the total amount of
upload data for the seed S and all peers. Hence, we have
the following equation,

fs +

n∑
i=1

fi =

n∑
i=1

ri. (2)

Since we are interested in estimating the lower bound
of the data dissemination time, we assume that upload
capacity of each peer i is to be fully utilized, i.e., we have
fi = Ui × ti(F). Besides, the total amount of download
bandwidth must be equal to n×Size(F), because all peers
have the entire file F at the end. Then, we can extend the
Eq. 2 as follows to deal with the ideal dissemination time
for the general case,

Us × ts(F) +

n∑
i=1

Ui × ti(F) = n× Size(F). (3)

Here, we have a min-max problem with its objective
function in Eq. 1 subject to the constraints given by Eq. 3.
Since the constraint is a linear equation, a hyperplane in
(n + 1)-dimension, we show that an optimal solution for
the constrained optimization problem can be obtained if
and only if when all ti are the same, i.e.,

ts(F) = t1(F) = t2(F) = · · · = tn(F). (4)

Lemma 1. Given a file F to a set of n peers, N =
{1, 2, . . . , n} and a seed S, the ideal dissemination time
can be obtained if and only if when all ti are the same.

Proof. We prove Lemma 1 by contradiction. We assumed
there is an optimal solution α and tαj (F) < tαs (F) =
tα1 (F) = tα2 (F) = · · · = tαn(F), where 1 ≤ j ≤ n. So,

Us× tαs (F)+

n∑
i=1

Ui× tαi (F) < Us× ts(F)+

n∑
i=1

Ui× ti(F).

Eq. 3 implies that the assumption is a contradiction. Thus,
we have Lemma 1.

Applying Eq. 4 to Eq. 3, we then have a lower bound of
MDT (F), denoted by T (F), for file F , as follows.

T (F) =
n× Size(F)

Us +
∑n

i=1 Ui
. (5)

Now, we are ready to show the following Lemma 2.

Lemma 2. Let T ∗(F) denote the MDT (F), of a feasible
schedule of the data dissemination problem for a given file
F . Then we have:

T ∗(F) ≥ max
{
T (F),

size(F)

Us
,
size(F)

min{Di}

}
, (6)

where the right-hand right of Eq. 6 is the lower bound
of the dissemination time in any algorithm for the data
dissemination problem.

Proof. Note that the lemma merely says that T ∗(F) must
be greater than 1) the lower bound (the ideal dissemina-
tion time), the Eq. 5 we derived in the above; 2) the time
for the seed S to transmit the file F , the bottleneck is
in the uplink capacity of the seed S; 3) the time for the
slowest peer to download the file F , the bottleneck is in
the download capacity of the slowest peer.

This analysis indicates that if someone has to design
a time-critical data dissemination system to approach the
ideal dissemination time in a general network environment,
the two prerequisite concepts should be considered: 1) the
system should enforce the peers to leave the system
at almost the same time, and 2) the system should
always fully utilize the upload capacity of each peer.
Based on the two observations, we present our design of
the Bee protocol in the next Section III.

III. Bee Design
In this section, we present the Bee system to approach

the ideal dissemination time that we derived in Section II.
In the Bee, like other P2P content delivery systems [6],
the file is divided into many fix-sized blocks (256KB). The
proposed Bee consists of 3 parts: slowest peer first strat-
egy, local rarest first strategy and topology adaptation
algorithm. The slowest peer first strategy is used to control
and balance the dissemination process of all nodes. By
this strategy, nodes might have the same download process
and complete the download at almost the same time with
high probability. The local rarest first strategy can prevent
the last block problem and increase blocks availability.
The topology adaptation algorithm is used to dynamically
adjust different uplink capacities and make nodes fully
utilize the upload capacity with high probability.

At a high level overview, Bee organizes a random mesh
overlay among a set of participating peers. Suppose that
a large file is announced from a single seed S, then peers
require to download the content at the same time. Each
peer gets into contact with well-know register server and
retrieves a contact list of a uniform random subsets of all
peers. The size of contact list is a small constant, say 80.
The initial mechanism is the same as that used in other
P2P content delivery systems.

A. Slowest Peer First Strategy
We describe the slowest peer first strategy and the

procedure that each peer performs. Overall, a good peer
selection strategy would be one which neither requests a
peer to maintain a global knowledge, nor to communicate
with many peers, but the one which is able to find peers
having blocks the peer needs. In order to minimize the
MDT of the dissemination system, our focus is the devel-
opment of a distributed system, which each peer learns its
nearby peers’ statuses (with local knowledge) and selects
a suitable peer to upload blocks.

The design principle of the slowest peer first strategy
is to fully utilize all the upload capacity of peers in the
system. It implies that a peer can always find some peers to

IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY 4

n3

n6
n7

n8n1

n9

n2

n4

Seed

Fig. 2: An illustration of the slowest peer first strategy:
The shaded content within a peer represents the percent-
age of the file that a peer has downloaded.

upload blocks to utilize its upload capacity. Based on the
slowest peer first strategy, a peer i always picks the slowest
downloading peer among its contact list, where the slowest
downloading peer is the peer that has the least number of
blocks. Consequently, the peer i can always upload blocks
to the picked peer to utilize its upload capacity, because
there is a high probability that the peer i has some blocks
that the picked peer does not have. In this point of view,
the slowest peer first selection strategy makes our Bee
system to be able to maintain a high level of throughput
of peer’s upload capacity.

The operation of the slowest peer first strategy is effi-
cient and sustainable for fully utilizing the upload capacity
of each peer. Figure 2 illustrates the idea of the slowest
peer first strategy. After a peer joins, it periodically sends
the requesting block messages to the peers in the contact
list for downloading the blocks it lacks. When a peer starts
to upload blocks to other peers, it maintains a working
set, and the peer tries to utilize its upload capacity as
much as possible to upload blocks to the peers in its
working set. The working set is a set of peers selected from
the contact list over a period of time. The size of working
set is controlled by the topology adaptation algorithm that
we will discuss later. We present the pseudocode of the
slowest peer first algorithm in Algorithm 1 as follows.

Algorithm 1 Slowest Peer First Strategy
1: Begin
2: WorkingSet[]← Null
3: for j ← 0 to Sizeof(WorkingSet[]) do
4: Pick the slowest peer i ∈ Contact List
5: WorkingSet[j]← peer i
6: j ← j + 1
7: end for
8: return WorkingSet[]
9: End

The advantage of the slowest peer first strategy is to
enforce peers to download blocks at approximately the
same progress and the design can significantly diminish the

MDT of the system. The disadvantage is that the faster
peers will be delayed by the slower peers. However, if the
faster downloading peers leave the system early, the MDT
of the system will be prolonged undoubtedly, recalling the
Lemma 1 in Section II.

B. Block Selection Strategy
Bee employs the local rarest first strategy for choosing

new blocks to download from neighboring peers. The local
rarest first strategy is proposed in BitTorrent [6], and it
can prevent the last block problem and increase the file
availability in a BitTorrent system. The main advantage
of the local rarest first strategy is to overcome the last
block problem [25] by favoring rare blocks. This strategy
equalizes the file block distribution to minimize the risk
that some rare blocks are lost when peers owning them
fail or depart the system. Bharambe et al. [26] study the
local rarest first strategy by simulations and show that
this strategy can address the last block problem efficiently.
Another advantage of the local rarest first strategy is
to increase the probability that a peer is useful to its
neighboring peers because it owns the blocks that others
do not have. Thus the local rarest first strategy helps
diversify the range of blocks in the system.

C. Topology Adaptation Algorithm
The design of Bee explicitly takes into account the

capacity heterogeneity associated with each peer in P2P
networks. Bee leverages the topology adaptation algorithm
to dynamically adjust different uplink capacities. In gen-
eral, the available bandwidth estimation [27] is a non-
trivial problem, so it is hard to decide how many upload
connections a peer should have in a Bee system. However,
using a fixed number of upload connections will not per-
form well under a wide variety of peers’ uplink capacities.
Hence, Bee leverages a topology adaptation algorithm that
attempts to dynamically maintain the maximum number
of upload connections according to the upload capacity of
each peer.

We do not use the network bandwidth estimation tech-
niques [28] to determine the precise uplink capacity of
each peer. Instead, we assume that the user can config-
ure a coarse-grained bandwidth that provides an initial
maximum upload capacity Ui. In addition, we assume that
peers (including the seed S) have limited upload/download
bandwidth but the Internet backbone has infinite band-
width. This assumption is reasonable because the previous
study [29] shows that the Internet backbone indeed has
low utilization and the bottleneck almost happens at the
parts near the end hosts. Based on the assumptions, we
can develop the topology adaptation algorithm.

The topology adaptation algorithm is to set the upload
rate for each upload connection to the fixed value, a rate
r, for all peers and the seed S. Hence, if a peer i has
maximum upload capacity of Ui, it establishes k = ⌈Ui

r ⌉
connections, where r ≤ Ui, ∀ i ∈ N . Each peer establishes
k concurrent upload connections among its working set,

IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY 5

and intuitively a peer can upload the blocks it holds to
other peers.

The basic idea behind this approach is that by serving
k different peers with an uploading rate r simultaneously,
the peer can fully utilize its upload capacity and thus
maximize its contribution to the system throughput. For
example, a peer with higher capacity might establish ten
or more connections than a peer with lower capacity. How-
ever, a smaller value of r might slow down the distribution
rate for blocks. The analysis of the upload rate r has been
demonstrated in our previous work [30].

IV. System Analysis
In this section, we describe the MDT (F) in the Bee

can approach to the ideal dissemination time with a high
probability. We also present the analysis for the Bee in
terms of the scalability and efficiency. Here, we assume
that all peers join the system at the same time and
all the communications between peers are reliable. We
also assume that peers do not leave the system either
voluntarily or due to failures, and no transmission delay.

A. Scalability
The design of Bee is very scalable. A peer only needs to

maintain a random overlay mesh with a constant number
of connections, regardless of the size of the system. This
implies that each peer only connects to a few number of
peers, so the loading in each peer should be very slight.
The possible concern is the scalability of the register server
in Bee. The register server in Bee serves as the same role
as the tracker in BitTorrent or the rendezvous point in
some application overlay multicast systems [31], [32]. The
design of the register server can be distributed, the service
loading is distributed evenly to many servers. Therefore,
we believe that the register server should not be a critical
problem to limit the scalability of Bee.

B. Efficiency
We discuss why the MDT (F) in the Bee can approach

to the lower bound with a high probability. We do not
provide a theoretical proof on the optimality of the Bee
due to the inherent difficulty of any heuristic-driven dis-
tributed systems, such as BitTorrent. To the best of our
knowledge, we are not aware of any theoretical results
to prove that a distributed system can achieve the lower
bound. In [33], Wu et al. show a centralized scheduling
algorithm to minimize the dissemination time with all
knowledge of system capacities. However, the centralized
solution only works in a static network environment and
it also does not consider the dynamic behaviors of peers
in real systems.

Before we analyze Bee system, we assume that the goal
of Bee is to disseminate a file F from a seed S to a number
of receivers under the constraints of size(F)

Us
≤ T (F) and

size(F)
min{Di} ≤ T (F), where T (F) is defined in the Eq. 5.
When the two constraints hold, neither the seed S nor

TABLE I: The upload/download bandwidth distribution.

Network Type Downloadlink Uplink Fraction
Heterogeneous 1500kbps 384kbps 50%

3000kbps 1000kbps 50%
More heterogeneous 784kbps 128kbps 20%

1500kbps 384kbps 40%
3000kbps 1000kbps 25%
10000kbps 5000kbps 15%

the slowest peer does not become the bottleneck in the
system. In addition, we also assume that the blocks are
uniformly distributed among peers, which is caused by the
local rarest first strategy.

Recall the analysis in Section II, we introduced two de-
sign principles for a data dissemination system to achieve
the theoretical lower bound. The first one is that all peers
should leave the system at the same time as much as
possible, and each peer has to utilize its upload bandwidth
as much as possible. For the first principle, the slowest peer
strategy could force peers to progress at approximately
the same download speed. For the other, all peers may
fully contribute to the uploading capacity of whole system
based on the topology adaptation algorithm, thus each
peer can maintain its upload contribution to the system
throughput continuously.

At the beginning of the system, only the seed S has the
file, so it is impossible to fully utilize the upload bandwidth
of each peer. We define the period of time for the system
so that each peer has enough blocks to exchange as the
start-up time of the system. Assume that the size of
block is 256KB, the start-up time is at about 256KB

r ×
logn, where r is the upload rate and n is the number of
peers in the system. Our previous work [18] shows how
to find the optimal rate r in static networks. Moreover,
a peer only sends out a block when it already received a
request from a peer and it should not receive duplicated
blocks.

Now, we provide an example to explain the behaviors
in Bee. In homogeneous networks, the upload connections
k of each peer is equivalent, assume k = 5 (Ui

r = 5). If the
number of peers is n, the number of incoming connections
per peer should be 5 (5 = n×k

n) in average, due to the
overlay mesh is constructed randomly. In heterogeneous
networks, each peer in Bee could have the same number
of incoming connections in average based the assumption.
It should be easy to expound that Bee system could
enforce most of peers at the same download progress
approximately and make most of peers leaving the system
at roughly the same time. Thus, with a high probability,
the MDT (F) of a Bee system can approximately approach
to the ideal dissemination time both in homogeneous and
heterogeneous networks.

IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY 6

(a) Comparison of Bee to BitTorrent for
MDT .

(b) Cumulative distribution of download peers
on Bee and BitTorrent with 2000 nodes.

(c) The average uploading link utilization
of peers, seed (6000Kbps), higher capacity
peers (1000Kbps) and lower capacity peers
(400Kbps).

Fig. 3: The comparisons of Bee to BitTorrent in the heterogeneous environment.

V. Performance Evaluation
We made a simulation to compare the dissemination

time in Bee with the lower bound of dissemination time
and the required time in BitTorrent [6]. We consider two
network scenarios, each representing a different degree of
heterogeneity in their upload/download capacity. Table I
presents the bandwidth distribution of each network con-
dition. The heterogeneous network has 2 types of peers.
A more heterogeneous condition with 4 types of peers is
considered, and this setting is the realistic peer bandwidth
distribution of Gnutella [34]. And the arrival pattern is
flash crowd, i.e., all peers join at the initial stage and leave
the system when they finish their downloading.

For the parameter r in Bee, we configure the up-
loading rate r = 25 in the all experiments based on
our previous results [30]. All the experiments were run
using an Intel Xeon E5560 CPU at 2.80 GHz with 512
GB of RAM. These source code of the simulations and
the experimental results can be accessed publicly at
https://github.com/cjwu/bee.

Unless otherwise specified, we use the following settings
in our experiments. We used a file size of 200MB with a
block size 256KB. The seed’s uplink capacity is 6000Kbps.
The number of contact list is 40 in both Bee and Bit-
Torrent, and the maximal number of concurrent upload
connections per peer is 5 in BitTorrent settings. Then the
number of initial seeds is only one in all of our experiments.
Finally, the endgame model [35] of BitTorrent is not
enabled because it only works for a small percentage of
the download time.

A. Heterogeneous Environment
We evaluate the performance of Bee and BitTorrent

in a heterogeneous network that consists of two types of
peers, one of which has a higher upload/download capacity
(3000/1000 Kbps) than the other (1500/384 Kbps). In this

scenario, the lower bound is 2333 seconds according to
Eq. 6 in the section II.

Fig. 3 shows the comparisons of Bee to BitTorrent in
heterogeneous environments. Here, we use a normalized
MDT metric which is the MDT dividing the lower bound.
Fig. 3(a) shows the normalized MDT metric for Bee and
BitTorrent. In Fig. 3(a), we present the scalability of
Bee by increasing the network size from 500 to 5000 in
experiments. The results demonstrate that Bee is almost
twice faster than BitTorrent in the MDT metric, and also
show that both Bee and BitTorrent are scalable systems.

We also show the cumulative distribution of the number
of complete peers in a network with 2000 peers in Fig. 3(b).
The result shows that a peer with higher capacity leaves
faster than the peer with lower capacity in BitTorrent.
After the higher capacity peers leave BitTorrent, the total
upload capacity of BitTorrent is decreased significantly,
and the lower capacity peers are required to stay in the
system longer to download the complete file. Thus, the
MDT of BitTorrent is also prolonged, it fits our analysis
in the section II.

Compared to BitTorrent, the MDT of Bee approaches
to the lower bound approximately due to the two design
principles we analyzed in the section IV. More clearly, the
normalized MDT of Bee is only 1.1. As we mentioned pre-
viously, any data dissemination system requires a start-
up time to let peers have enough blocks to exchange and
to utilize their uplink capacities. The results examine that
the start-up time of an efficient system could be short.

In addition, we show the average uploading link uti-
lization of peers, including the seed (6000 Kbps) and two
type of peers (1000 Kbps and 400 Kbps) in Fig. 3(c). The
result shows that the uplink utilization of each peer is
over 90% (96% in Bee) in average, which means that the
overall upload utilizations of the two systems are close to
fully utilized. However, in BitTorrent, a peer with higher
upload capacity should exchange blocks with another one

https://github.com/cjwu/bee

IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY 7

(a) Comparison of Bee to BitTorrent for MDT (b) The average uploading link utilization of peers, seed
(6000Kbps), others indicate peer capacity

(c) Cumulative distribution of download peers on Bee
and BitTorrent with 2000 peers.

(d) Cumulative distribution of peers on Bee that each
peer can download a complete file before the lower
bound.

Fig. 4: The comparisons of Bee to BitTorrent in the more heterogeneous environment.

with similar upload capacity, because the Tit-For-Tat
(TFT) peer selection strategy [5] is likely to reward for
the one with similar upload capacity. As a result, the
overall uplink utilization of BitTorrent is efficient, but
the design philosophy of BitTorrent is exclusively due to
egoistic motivation, so the lower capacity peers need more
time to download the complete file.

B. More Heterogeneous Environment
In this section, we repeat the above experiments in a

more heterogeneous network with 4 types of peer capac-
ities, the detailed bandwidth distribution is presented in
Table I. This results examine the behaviors of Bee and
BitTorrent in a complex network environment and in a
real P2P network condition. In this simulation setting, the
lower bound is 2089 seconds, it can be derived from the
Eq. 6 (size(F)

min{Di} = 1638400
784). Thus, the bottleneck of the

system is at the download link of the slowest peer.
First, we study the impacts of various network sizes

by scaling from 500 to 5000 peers. Fig. 4(a) shows the
normalized MDT metric of Bee and BitTorrent. This
result also shows that Bee is at least 2 times faster than
the BitTorrent in MDT metric. As a result, the bottleneck
of the system (the slowest peer) makes a significant impact

on the MDT metric. Without a doubt, the result shows
that both Bee and BitTorrent are scalable systems again,
even in a more heterogeneous network.

Next, we examine the uplink utilization of peers in
Bee and BitTorrent in the more heterogeneous network.
Fig. 4(b) shows the uplink utilization of peers in Bee and
BitTorrent. The results indicate that the uplink utilization
of the seed in Bee is over 90%, but only 50% in BitTorrent.
From our viewpoints, in BitTorrent, when the variance of
upload capacity increases, more peers with higher capacity
will leave the system early. So that the seed’s uplink
utilization may be limited, because the download capacity
of the lower capacity peers is too small to fully utilize
the uplink capacity of the seed. That might be the main
reason that the uplink utilization of the seed in BitTorrent
is only 50% in average, especially the upload connections
of the seed is fixed to 5 in original BitTorrent setting. As
a result, the uplink utilization of the seed decreases when
the variance of download capacity increases in BitTorrent.
However, the uplink utilization of seed in Bee can be fully
utilized regardless of the heterogeneity degree of uplink ca-
pacity, it benefits from the topology adaptation algorithm
of Bee. In Fig. 4(b), BitTorrent performs better than Bee
when the upload bandwidth is less than 1000 kbps. The

IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY 8

Fig. 5: The comparison of Bee to BitTorrent in various
uplink capacities of the seed.

main reason is that the lower capacity nodes (< 1000 kbps)
in Bee need more time to find the nodes to contribute
their upload bandwidth to the system, especially in this
simulation settings.

We now investigate the MDT metric of Bee and BitTor-
rent in the complex network environment. In Fig. 4(c),
we show the cumulative distribution of the number of
complete peers in the complex network with 2000 peers.
Fig. 4(c) illustrates that 80% peers leave Bee system at
the T time (Recall that the Eq. 6) and the remained
20% peers prolong the MDT of Bee system. More clearly,
these 80% peers are higher capacity peer (download ca-
pacity), and the dissemination time of remained peers
(poor download capacity) is limited by their download
capacities. Note that in this simulation, the bottleneck of
the system is at the download link of the slowest peer.
Again, the result shows that when the higher capacity
peers leave system early, the upload capacity of overall
system decreases dramatically, and that results in a longer
maximum dissemination time in both Bee and BitTorrent.
However, BitTorrent needs more than 8 times to finish
downloading compared to the lower bound.

Next, we configure the download capacities of all peers
to make sure that the lower bound is not at the download
capacity of peers (size(F)

min{Di}) and repeat the simulation
again to examine the MDT metric of Bee and BitTorrent.
We only increase the download capacity of the slowest
peers from 784 Kbps to 1200 Kbps in this network. So
that the lower bound in this network is T after the
configurations are applied, here the (size(F)

min{Di} = 1365.3)
is smaller than (T = 1374.9).

Fig. 4(d) shows the cumulative distribution of the num-
ber of complete peers with the configurations. In fig 4(d),
the top figure is the CDF with 784 Kbps (minimum
download capacity) and the bottom one is the CDF with
1200 Kbps. As shown as the results, we can observe
that the MDT in Bee can approximately approach the
lower bound T . The result implies that the performance
of Bee is efficient and BitTorrent might be the network
heterogeneity independent. The result also shows that the
dissemination time in Bee can approach the lower bound

Fig. 6: The comparison of Bee to BitTorrent in various
arrival rate.

approximately when the bottleneck is not at the download
capacity of all peers. However, increasing the download
capacity of all peers does not improve the MDT metric
of BitTorrent. The result also shows that it still is a long-
tail curve in the results of BitTorrent regardless of the
bottleneck is at the download capacities or not.

C. The Impact on Seed Capacity
We consider the effects of various seed capacities on the

performance of Bee and BitTorrent. The number of peers
at the initial stage is set to 2000. In Fig. 5, Bee obviously
outperforms BitTorrent in the performance index MDT .
However, when the uplink capacity of the seed drops to
1000 Kbps, the bottleneck of this system is at the uplink
capacity of the seed (size(F)

Us
), so the MDT of Bee and

BitTorrent both result in poor performance. This result
implies that the efficiency of Bee is limited by the seed’s
capacity, but BitTorrent has little effect on the seed’s
capacity. All peers in BitTorrent have to stay in the system
until all blocks have been spread to the system, it improves
the MDT performance of BitTorrent. These results also
meet our system analysis in Section IV, a poor capacity
seed may make a dissemination system require more start-
up time to let peers have enough blocks to stabilize
exchanging process and inhibits development of spreading
blocks.

D. The Impact on Arrival Pattern
We evaluate the effects of various arrival rates for

Bee and BitTorrent in the more heterogeneous network
conditions (with 4 types of peer capacities). Fig. 6 shows
the normalized MDT performance comparisons of Bee
and BitTorrent in various arrival rates. In Fig. 6, we can
observe that when the arrival rate is low (0.1), a few peers
join the system and contribute upload capacity, so that the
overall upload capacity of the system is poor. And another
reason is that more peers may need to wait at a longer
start-up time to receive blocks and to exchange blocks.
So the peers in Bee or BitTorrent would require more time
to complete the download file. However, as peer arrival

IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY 9

(a) The distribution of peer joining time. (b) Distribution of dissemination time.

(c) The uplink utilization of each Bee peer. (d) The uplink utilization of each BitTorrent peer.

Fig. 7: Performance of Bee and BitTorrent with arrival rate from Redhat 9 tracker log.

rate is increased, the upload capacity of the system also is
increased promptly, that result corresponds to the analysis
in Section IV. Based on the results, Bee outperforms better
performance than BitTorrent in MDT metrics regardless
of the arrival rate.

E. The Impact on Flash Crowd Traffic
We now evaluate Bee and BitTorrent in a realistic

flash crowd traffic. In this experiment, each peer joins
the system according to the tracker log of a Redhat 9
distribution torrent [36]. The capacity of each peer is
randomly assigned with one of 4 types of peer capacities,
and the upload bandwidth of the seed is set to 6000 Kbps.
Note that the lower bound in this case is size(F)

min{Di} = 2089
seconds.

All the results are shown in Fig. 7. Fig. 7(a) illustrates
the distribution of peers arrival time, the tracker log
consists of over 12,000 peers arrival time, almost 80% of
which arrived before 2000 minute. When a new version
of Redhat IOS is released, the flash crowd phenomenon
occurs at the file release time, numerous users suddenly
request to download the file. The flash crowd traffic model
captures the most prominent flash crowd characteristics
observed in these traces.

First, we show the download completion time of each
peer for Bee and BitTorrent in Fig. 7(b). The result shows

that 83% peers in Bee finish their download before 2000
seconds. On the other hand, only 50% BitTorrent peers
can complete their download at 2000 seconds. Note that
the lower bound is at the poor download capacity peers
(the lower bound is inherently limited size(F)

min{Di}). So these
poor peers need more download time to complete the file,
and the higher capacity peers (the lower bound is T) can
receive the complete file and leave the system without
waiting these slow download peers. So at the 10,000 time
point, most of peers remained in the system (17%) are
poor download capacity peers, this is the same behavior
we found in Fig. 4(c). The result also shows that the
distribution of the MDT of BitTorrent still is a long-
tail curve by the same process in Fig. 4(c). Moreover,
compared to BitTorrent, Bee only needs 1/3 time to finish
the file dissemination in the more heterogeneous network.

Here, we demonstrate the uplink utilization of all peers
in Bee and BitTorrent in Fig. 7(c) and Fig. 7(d), respec-
tively. We can see that the uplink utilization of each peer
in Bee is fully utilized (94% in most of peers). And we see
that BitTorrent results most of the time in a very poor
uplink utilization. One reason for this should be the TFT
peer selection strategy of BitTorrent, it might pair a higher
uplink capacity peer with a lower download capacity peer,
and TFT strategy keeps to search the peer with better
upload contributions. During the peer searching process,

IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY 10

the uplink capacity of the peer is at low utilization. Thus
the higher uplink capacity peers can not contribute their
full uplink bandwidth to the system continuously. The
main reason is that BitTorrent is inherently limited by
its design principles, which encourages fairness [37] in
peers, the TFT strategy makes all peers achieve fairness
in BitTorrent, considers to give and take equitably.

In summary, based on the simulation results, we show
that Bee has the ability to roughly approximate the lower
bound of a data dissemination system even in complex
network scenarios if and only if the lower bound of the
system is not at uplink capacity of the seed (size(F)

Us
)

and the download capacity of the peers (size(F)
min{Di}). Bee

is suitable as a building block in a time-critical data
dissemination applications, which can be the virtual ma-
chine (VM) deployment in cloud computing platforms [38]
or distributing the urgent content in network security
events [39].

VI. Related Work
In recent years, there are tremendous interests in build-

ing content delivery systems [40] to distribute content,
which aims to deliver large-sized data to a large group
of nodes spread across a wide-area network. However,
how to design an efficient data dissemination system to
achieve the lower bound of data dissemination time has
not been discussed in the previous literatures, especially
under flash crowd traffic. In this section, we describe the
recent research works about flash crowd traffic and present
the related work on the peer-assisted content delivery
systems. In addition, there are some advanced coding
techniques [41], [42] for content delivery, the detailed
survey can be reached in the article [43].

A. Flash Crowd Traffic
A flash crowd is a large traffic surge to a particular

system. It is not an usual event but causes poor perfor-
mance at the system and results in a significant number of
unsatisfied users. When a flash crowd occurs, the sudden
arrival of numerous peers may starve the capacity of a
system, and degrade the quality of service. Thus, it is
important to understand the challenges for a data dissem-
ination system, and how flash crowds affect the efficiency
of data dissemination.

There is a large body of work on the modeling of P2P
data dissemination systems [44] but a few work focusing
on flash crowd [1], [45], [46]. In reality, flash crowds may
result the worst case performance of P2P data dissemi-
nation systems [1]. Zhang et al. [1] propose a model for
analyzing BitTorrent flashcrowds by studying millions of
swarms from BitTorrent trackers. They show BitTorrent
flashcrowds occur in very small fractions, but affect over
million users. Carbunaru et al. [45] formulate an analytical
model for flash crowds in homogeneous and heterogeneous
capacity networks and focused on performance scalability
of content distribution and server provisioning during flash
crowds. Chen et al. [46] provide a fluid model study on

the performance of P2P live streaming systems under
flash crowds, and denote that the worst-case peer startup
latency and system recovery time increase logarithmically
with the flash crowd size. A key difference is that we
analyze the impact of multiple classes of peers on het-
erogeneous networks to achieve the lower bound of the
maximum dissemination time during flash crowd.

B. Peer-assisted Content Delivery Systems
The peer-assisted content delivery systems have received

a lot of attention from Internet users and networking
researchers [47], [48], [49], [50]. Interested reader can refer
to Nasreen et al., [51] who present a detailed survey on
this topic. The main concept of the peer-assisted con-
tent delivery is inspired from the parallel-downloading
mechanism [52]. BitTorrent [6] is a popular content dis-
tribution system which is successful for its efficiency in
delivering a large file. There are two mechanisms used in
BitTorrent, namely, the TFT peer selection policy and
the local rarest first piece selection strategy. Slurpie [7]
focuses on reducing loading on servers and peer download
times. Slurpie uses an adaptive downloading mechanism
to improve peer’s performance according to its capacity,
and adopts a random back-off algorithm to control loading
on the server. Crew [53] is a gossip-based system for
data dissemination and it performs better dissemination
performance than BitTorrent in experiments, but how
close it approaches to the lower bound is still unknown.
Kumar et al. [54] demonstrate a set of expressions for
the minimum distribution time of a general heterogeneous
peer-assisted file distribution system. Ezovski et al. [55]
provide an analytical result of minimizing average finish
time by using the water-filling technique, in an upload-
constrained P2P network. The research results focused
on analyzing and minimizing the download time of a
single peer is presented in [56] and minimizing the average
download time of a system is presented in [57]. Zheng
et al. [58] formulate an optimization problem of content
distribution as an optimal set of distribution trees for
determining the rate of distribution on each tree under
bandwidth limitation networks.

VII. Conclusion
We define the data dissemination problem and examine

an analysis of the lower bound of the maximum dissem-
ination time for this problem under flash crowd traffic.
We present the design principles of Bee to capture the
two following notions: (i) all peers stay the system to
contribute their upload capacities (the slowest peer selec-
tion strategy), and (ii) all peers fully utilize their upload
capacities (the topology adaptation algorithm). Bee does
not require any scheduling knowledge, each peer makes
its own decision to download blocks based on the local
knowledge. We have conducted extensive simulations to
evaluate the MTD performance of Bee, and the results
offer evidence that the maximum dissemination time in
Bee can roughly approximate the lower bound when there

IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY 11

are no bottleneck at the seed or at the download capacity
of the slowest peer, even under flash crowd traffic. In the
current Internet or the cloud computing platforms, Bee
can play a major role for addressing the time-critical data
dissemination applications in future development. It would
be interesting to examine the performance of Bee in the
current live streaming applications [59], especially in the
mobile internet [60]. We will implement and deploy the Bee
system in cloud computing platforms for investigating the
performance on the VM deployment in our future work.

Acknowledgment
The authors would like to thank Dr. Kuan-Ta Chen for

comments on an earlier draft of this paper, and this paper
is dedicated to the memory of our dear Dr. Kuan-Ta Chen.
The work was supported in part by the Ministry of Science
and Technology of Taiwan, under Contracts MOST110-
2222-E-182-003-. The authors would like to thank the
anonymous reviewers for their valuable comments and
suggestions to improve the manuscript.

References
[1] B. Zhang, A. Iosup, J. Pouwelse, and D. Epema, “Identifying,

analyzing, and modeling flashcrowds in bittorrent,” in 2011
IEEE International Conference on Peer-to-Peer Computing,
2011, pp. 240–249.

[2] M. Chen, Y. Qian, Y. Hao, Y. Li, and J. Song, “Data-driven
computing and caching in 5g networks: Architecture and delay
analysis,” IEEE Wireless Communications, vol. 25, no. 1, pp.
70–75, 2018.

[3] X. Li, X. Wang, C. Zhu, W. Cai, and V. C. M. Leung,
“Caching-as-a-service: Virtual caching framework in the cloud-
based mobile networks,” in 2015 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2015, pp.
372–377.

[4] A. Yahyavi and B. Kemme, “Peer-to-peer architectures for
massively multiplayer online games: A survey,” ACM Comput.
Surv., vol. 46, no. 1, jul 2013.

[5] Y. Nishi, M. Sasabe, and S. Kasahara, “Optimality analysis of
locality-aware tit-for-tat-based p2p file distribution,” Peer-to-
Peer Networking and Applications, vol. 13, no. 5, pp. 1688–1703,
Sep 2020.

[6] B. Cohen, “Incentives build robustness in bittorrent,” in In
Proc. of the Workshop on Economics of Peer-to-Peer Systems,
ser. P2PEcon ’03, 2003.

[7] R. Sherwood, R. Braud, and B. Bhattacharjee, “Slurpie: a
cooperative bulk data transfer protocol,” in IEEE INFOCOM
2004, vol. 2, 2004, pp. 941–951 vol.2.

[8] D. Kostić, A. C. Snoeren, A. Vahdat, R. Braud, C. Killian,
J. W. Anderson, J. Albrecht, A. Rodriguez, and E. Vandekieft,
“High-bandwidth data dissemination for large-scale distributed
systems,” ACM Trans. Comput. Syst., vol. 26, no. 1, mar 2008.

[9] K. Kim, S. Mehrotra, and N. Venkatasubramanian, “Efficient
and reliable application layer multicast for flash dissemination,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25,
no. 10, pp. 2571–2582, 2014.

[10] M. Deshpande, K. Kim, B. Hore, S. Mehrotra, and N. Venkata-
subramanian, “Recrew: A reliable flash-dissemination system,”
IEEE Transactions on Computers, vol. 62, no. 7, pp. 1432–1446,
2013.

[11] M. Zghaibeh, “O-torrent: A fair, robust, and free riding resistant
p2p content distribution mechanism,” Peer-to-Peer Networking
and Applications, vol. 11, no. 3, pp. 579–591, May 2018.

[12] C.-J. Wu, C.-Y. Li, and J.-M. Ho, “Improving the download
time of bittorrent-like systems,” in IEEE ICC, 2007.

[13] B. Barekatain, D. Khezrimotlagh, M. Aizaini Maarof, H. R.
Ghaeini, S. Salleh, A. A. Quintana, B. Akbari, and A. T.
Cabrera, “Matin: A random network coding based framework
for high quality peer-to-peer live video streaming,” PLOS ONE,
vol. 8, no. 8, pp. 1–17, 08 2013.

[14] X. Yang and G. de Veciana, “Service capacity of peer to peer
networks,” in IEEE INFOCOM 2004, vol. 4, 2004, pp. 2242–
2252 vol.4.

[15] N. Khan, M. Moharrami, and V. Subramanian, “Stable and
efficient piece-selection in multiple swarm bittorrent-like peer-
to-peer networks,” in IEEE INFOCOM 2020 - IEEE Conference
on Computer Communications, 2020, pp. 1153–1162.

[16] B. Fan, J. C. S. Lui, and D. Chiu, “The design trade-offs of
bittorrent-like file sharing protocols,” IEEE/ACM Transactions
on Networking, vol. 17, no. 2, pp. 365–376, 2009.

[17] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang,
“A performance study of bittorrent-like peer-to-peer systems,”
IEEE Journal on Selected Areas in Communications, vol. 25,
no. 1, pp. 155–169, 2007.

[18] C.-J. Wu, C.-F. Ku, J.-M. Ho, and M.-S. Chen, “A novel pipeline
approach for efficient big data broadcasting,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 28, no. 1, pp.
17–28, 2016.

[19] Z. Xu, L. Zhou, H. Dai, W. Liang, W. Zhou, P. Zhou, W. Xu,
and G. Wu, “Energy-aware collaborative service caching in a
5g-enabled mec with uncertain payoffs,” IEEE Transactions on
Communications, pp. 1–1, 2021.

[20] Q. Cheng, H. Shan, W. Zhuang, L. Yu, Z. Zhang, and T. Q. S.
Quek, “Design and analysis of mec- and proactive caching-
based 360 mobile vr video streaming,” IEEE Transactions on
Multimedia, pp. 1–1, 2021.

[21] A. M. Farley, “Broadcast time in communication networks,”
SIAM Journal on Applied Mathematics, vol. 39, no. 2, pp. 385–
390, 1980.

[22] S. Khuller and Y.-A. Kim, “Broadcasting in heterogeneous
networks,” Algorithmica, vol. 48, no. 1, pp. 1–21, May 2007.

[23] M. Deshpande, N. Venkatasubramanian, and S. Mehrotra,
“Heuristics for flash-dissemination in heterogenous networks,”
in Proceedings of the 13th International Conference on High
Performance Computing, 2006, p. 607–618.

[24] K.-S. Goetzmann, T. Harks, M. Klimm, and K. Miller, “Op-
timal file distribution in peer-to-peer networks,” in Algorithms
and Computation, T. Asano, S.-i. Nakano, Y. Okamoto, and
O. Watanabe, Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2011, pp. 210–219.

[25] W.-C. Liao, F. Papadopoulos, K. Psounis, and C. Psomas,
“Modeling bittorrent-like systems with many classes of users,”
ACM Trans. Model. Comput. Simul., vol. 23, no. 2, may 2013.

[26] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Ana-
lyzing and improving a bittorrent networks performance mech-
anisms,” in Proceedings IEEE INFOCOM 2006, 2006, pp. 1–12.

[27] A. Botta, G. E. Mocerino, S. Cilio, and G. Ventre, “A machine
learning approach for dynamic selection of available bandwidth
measurement tools,” in ICC 2021 - IEEE International Confer-
ence on Communications, 2021, pp. 1–6.

[28] J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study
of available bandwidth estimation tools,” in Proceedings of the
3rd ACM IMC, 2003, p. 39–44.

[29] A. Akella, S. Seshan, and A. Shaikh, “An empirical evaluation of
wide-area internet bottlenecks,” in Proceedings of the 3rd ACM
IMC, 2003, p. 101–114.

[30] C. Wu, C. Li, K. Yang, J. Ho, and M. Chen, “Time-critical
data dissemination in cooperative peer-to-peer systems,” in 2009
IEEE GLOBECOM, 2009.

[31] Yang-hua Chu, S. G. Rao, S. Seshan, and Hui Zhang, “A case
for end system multicast,” IEEE Journal on Selected Areas in
Communications, vol. 20, no. 8, pp. 1456–1471, 2002.

[32] C.-J. Wu, D.-K. Liu, and R.-H. Hwang, “A location-aware peer-
to-peer overlay network,” Int. J. Commun. Syst., vol. 20, no. 1,
p. 83–102, jan 2007.

[33] G. Wu and T. cker Chiueh, “How efficient is BitTorrent?” in
Multimedia Computing and Networking 2006, S. Chandra and
C. Griwodz, Eds., vol. 6071, International Society for Optics and
Photonics. SPIE, 2006, pp. 266 – 278.

[34] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “Measurement
study of peer-to-peer file sharing systems,” in Multimedia Com-
puting and Networking 2002, M. G. Kienzle and P. J. Shenoy,
Eds., vol. 4673, International Society for Optics and Photonics.
SPIE, 2001, pp. 156 – 170.

[35] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest first and
choke algorithms are enough,” in Proceedings of the 6th ACM
SIGCOMM Conference on Internet Measurement, ser. IMC ’06.

IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY 12

New York, NY, USA: Association for Computing Machinery,
2006, p. 203–216.

[36] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. A. Felber,
A. Al Hamra, and L. Garcés-Erice, “Dissecting bittorrent: Five
months in a torrent’s lifetime,” in Passive and Active Network
Measurement, C. Barakat and I. Pratt, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 1–11.

[37] A. Sherman, J. Nieh, and C. Stein, “Fairtorrent: A deficit-
based distributed algorithm to ensure fairness in peer-to-peer
systems,” IEEE/ACM Transactions on Networking, vol. 20,
no. 5, pp. 1361–1374, 2012.

[38] M. Schmidt, N. Fallenbeck, M. Smith, and B. Freisleben, “Effi-
cient distribution of virtual machines for cloud computing,” in
2010 18th Euromicro Conference on Parallel, Distributed and
Network-based Processing, 2010, pp. 567–574.

[39] L. Bilge and T. Dumitraş, “Before we knew it: An empirical
study of zero-day attacks in the real world,” in Proceedings of
the 2012 ACM Conference on Computer and Communications
Security, ser. CCS ’12. New York, NY, USA: Association for
Computing Machinery, 2012, p. 833–844.

[40] B. Zolfaghari, G. Srivastava, S. Roy, H. R. Nemati, F. Afghah,
T. Koshiba, A. Razi, K. Bibak, P. Mitra, and B. K. Rai,
“Content delivery networks: State of the art, trends, and future
roadmap,” ACM Comput. Surv., vol. 53, no. 2, Apr. 2020.

[41] C. Gkantsidis and P. R. Rodriguez, “Network coding for large
scale content distribution,” in Proceedings IEEE 24th INFO-
COM, vol. 4, 2005, pp. 2235–2245 vol. 4.

[42] J. Su, Q. Deng, and D. Long, “Pclnc: A low-cost intra-generation
network coding strategy for p2p content distribution,” Peer-to-
Peer Networking and Applications, vol. 12, no. 1, pp. 177–188,
Jan 2019.

[43] B. Li and D. Niu, “Random network coding in peer-to-peer
networks: From theory to practice,” Proceedings of the IEEE,
vol. 99, no. 3, pp. 513–523, 2011.

[44] D. Qiu and R. Srikant, “Modeling and performance analysis
of bittorrent-like peer-to-peer networks,” in Proceedings of the
2004 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, ser. SIGCOMM
’04. New York, NY, USA: Association for Computing Machin-
ery, 2004, p. 367–378.

[45] C. Carbunaru, Y. M. Teo, B. Leong, and T. Ho, “Modeling
flash crowd performance in peer-to-peer file distribution,” IEEE
Trans. Parallel Distributed Syst., vol. 25, no. 10, pp. 2617–2626,
2014.

[46] Y. Chen, B. Zhang, C. Chen, and D. M. Chiu, “Performance
modeling and evaluation of peer-to-peer live streaming systems
under flash crowds,” IEEE/ACM Transactions on Networking,
vol. 22, no. 4, pp. 1106–1120, 2014.

[47] N. Anjum, D. Karamshuk, M. Shikh-Bahaei, and N. Sastry,
“Survey on peer-assisted content delivery networks,” Computer
Networks, vol. 116, pp. 79–95, 2017.

[48] P. Michiardi, D. Carra, F. Albanese, and A. Bestavros, “Peer-
assisted content distribution on a budget,” Computer Networks,
vol. 56, no. 7, pp. 2038–2048, 2012.

[49] T. Karagiannis, P. Rodriguez, and K. Papagiannaki, “Should in-
ternet service providers fear peer-assisted content distribution?”
in Proceedings of the 5th ACM SIGCOMM Conference on In-
ternet Measurement, ser. IMC ’05. USA: USENIX Association,
2005, p. 6.

[50] J. Lin, Z. Li, G. Xie, Y. Sun, K. Salamatian, and W. Wang,
“Mobile video popularity distributions and the potential of
peer-assisted video delivery,” IEEE Communications Magazine,
vol. 51, no. 11, pp. 120–126, 2013.

[51] N. Anjum, D. Karamshuk, M. Shikh-Bahaei, and N. Sastry,
[54] R. Kumar and K. W. Ross, “Peer-assisted file distribution: The

minimum distribution time,” in 2006 1st IEEE Workshop on
Hot Topics in Web Systems and Technologies, 2006, pp. 1–11.

“Survey on peer-assisted content delivery networks,” Comput.
Netw., vol. 116, no. C, p. 79–95, Apr. 2017.

[52] P. Rodriguez and E. W. Biersack, “Dynamic parallel access to
replicated content in the internet,” IEEE/ACM Trans. Netw.,
vol. 10, no. 4, p. 455–465, Aug. 2002.

[53] M. Deshpande, Bo Xing, I. Lazardis, B. Hore, N. Venkata-
subramanian, and S. Mehrotra, “Crew: A gossip-based flash-
dissemination system,” in 26th IEEE ICDCS, 2006, pp. 45–45.

[55] G. M. Ezovski, A. Tang, and L. L. H. Andrew, “Minimizing
average finish time in p2p networks,” in IEEE INFOCOM 2009,
2009, pp. 594–602.

[56] Y.-M. Chiu and D. Y. Eun, “Minimizing file download time in
stochastic peer-to-peer networks,” IEEE/ACM Transactions on
Networking, vol. 16, no. 2, pp. 253–266, 2008.

[57] M. Sasabe, “Analysis of minimum distribution time of tit-
for-tat-based P2P file distribution: Linear programming based
approach,” Peer-to-Peer Networking and Applications, vol. 14,
no. 4, pp. 2127–2138, 2021.

[58] X. Zheng, C. Cho, and Y. Xia, “Content distribution by multi-
ple multicast trees and intersession cooperation: Optimal algo-
rithms and approximations,” Computer Networks, vol. 83, pp.
100–117, 2015.

[59] X. Wei, P. Ding, L. Zhou, and Y. Qian, “Qoe oriented chunk
scheduling in p2p-vod streaming system,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 8, pp. 8012–8025, 2019.

[60] M. Qin, L. Chen, N. Zhao, Y. Chen, F. R. Yu, and G. Wei,
“Computing and relaying: Utilizing mobile edge computing for
p2p communications,” IEEE Transactions on Vehicular Tech-
nology, vol. 69, no. 2, pp. 1582–1594, 2020.

Chi-Jen Wu currently is an assistant pro-
fessor of the Department of Computer Sci-
ence and Information Engineering at Chang
Gung University, Taiwan since February 2021.
He received his Electrical Engineering Ph.D.
from National Taiwan University in July 2012.
He worked as a Distinguished Postdoctoral
Scholar of the Institute of Information Sci-
ence, Academia Sinica from 2012 to 2013. His
research interests include Content Distribu-
tion, Mobile Cloud Computing, and Artificial

Intelligence with a specific focus on Computational Advertising,
Marketing Automation, and Financial Computing. He is a member
of IEEE.

Jan-Ming Ho received his Ph.D. degree in
electrical engineering and computer science
from Northwestern University in 1989. Dr.
Ho joined the Institute of Information Sci-
ence, Academia Sinica as associate research
fellow in 1989, and was promoted to research
fellow in 1994. His research interests cover
the integration of theory and applications, in-
cluding information retrieval and extraction,
knowledge management, combinatorial opti-
mization, multimedia network protocols and

their applications, web services, bioinformatics, and digital library
and archive technologies. Dr. Ho also published results in VLSI/CAD
physical design.

	INTRODUCTION
	Data Dissemination Problem
	Ideal Dissemination Time (Lower Bound)

	Bee Design
	Slowest Peer First Strategy
	Block Selection Strategy
	Topology Adaptation Algorithm

	System Analysis
	Scalability
	Efficiency

	Performance Evaluation
	Heterogeneous Environment
	More Heterogeneous Environment
	The Impact on Seed Capacity
	The Impact on Arrival Pattern
	The Impact on Flash Crowd Traffic

	Related Work
	Flash Crowd Traffic
	Peer-assisted Content Delivery Systems

	Conclusion
	References
	Biographies
	Chi-Jen Wu
	Jan-Ming Ho

